论著 · 技术与方法

重度牙周炎小鼠模型构建方法的优化与评价

  • 王佳璇 ,
  • 张骞骞 ,
  • 隋佰延 ,
  • 刘昕
展开
  • 上海交通大学医学院附属第九人民医院口腔材料科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011
王佳璇(2000—),女,硕士生;电子信箱:wangjiaxuan@sjtu.edu.cn
刘 昕,研究员,博士;电子信箱:liuxin8253@sjtu.edu.cn

收稿日期: 2024-09-09

  录用日期: 2024-09-27

  网络出版日期: 2025-01-17

基金资助

国家自然科学基金(82271024);上海交通大学医学院附属第九人民医院交叉基金(JYJC202309);上海市重中之重研究中心项目(2022ZZ01017);中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-037)

Optimization and evaluation of mouse model construction method for severe periodontitis

  • WANG Jiaxuan ,
  • ZHANG Qianqian ,
  • SUI Baiyan ,
  • LIU Xin
Expand
  • Department of Dental Materials, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Institute of Stomatology, Shanghai 200011, China
LIU Xin, E-mail: liuxin8253@sjtu.edu.cn.

Received date: 2024-09-09

  Accepted date: 2024-09-27

  Online published: 2025-01-17

Supported by

National Natural Science Foundation of China(82271024);Cross Foundation of Ninth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine(JYJC202309);Shanghai′s Top Priority Research Center(2022ZZ01017);Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2019-I2M-5-037)

摘要

目的·比较单纯丝线结扎和丝线结扎与注射牙龈卟啉单胞菌来源的脂多糖(Porphyromonasgingivalis lipopolysaccharide,P.g. LPS)联合这2种牙周炎造模方法,探究更为理想的重度牙周炎小鼠模型。方法·将15只C57BL/6小鼠分为健康对照组、单纯丝线结扎牙周炎造模组和丝线结扎并注射P.g. LPS联合牙周炎造模组。14 d后,对小鼠进行以下检查:体视显微镜下检测牙齿松动度、探诊深度;通过显微计算机断层扫描(micro computed tomography,Micro-CT)和体视显微镜分析小鼠牙槽骨吸收程度[牙槽骨骨体积分数、骨密度、釉质牙骨质界(cemento-enamel junction,CEJ)到牙槽嵴顶(alveolar bone crest,ABC)的距离和CEJ与ABC之间的面积],采用酶联免疫吸附试验评估小鼠血清炎症因子白细胞介素-1β(interleukin-1β,IL-1β)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)水平。结果·与单纯丝线结扎的小鼠相比,丝线结扎并连续注射P.g. LPS的小鼠上颌左侧第二磨牙的牙齿松动度动态变化[(2.20±0.45)vs(1.40±0.55)]、平均探诊深度[(1.05±0.21)mm vs (0.58±0.39)mm]显著增加,差异具有统计学意义(P<0.05)。与单纯丝线结扎的小鼠相比,丝线结扎并连续注射P.g. LPS的小鼠上颌左侧第二磨牙的骨体积分数[(16.44%±3.35%)vs(28.97%±7.90%)]、骨密度[(0.42±0.04)g/cm3vs(0.55±0.08)g/cm3]显著降低,CEJ到ABC的距离[(0.88±0.03)mm vs(0.74±0.12)mm]和CEJ与ABC之间的面积[(0.34±0.01)mm2vs(0.30±0.02)mm2]显著增加,差异具有统计学意义(均P<0.05)。与单纯丝线结扎的小鼠相比,丝线结扎并连续注射P.g. LPS的小鼠血清中TNF-α、IL-1β的含量明显升高,差异具有统计学意义(均P<0.05)。结论·丝线结扎并连续注射P.g. LPS的小鼠牙周炎模型构建方法可能更适合用于研究重度牙周炎疾病的发生发展与治疗。

本文引用格式

王佳璇 , 张骞骞 , 隋佰延 , 刘昕 . 重度牙周炎小鼠模型构建方法的优化与评价[J]. 上海交通大学学报(医学版), 2025 , 45(1) : 79 -86 . DOI: 10.3969/j.issn.1674-8115.2025.01.009

Abstract

Objective ·To investigate an optimal severe periodontitis mouse model by comparing two induction methods: simple ligature and ligature combined with injection of Porphyromonasgingivalis lipopolysaccharide (P.g. LPS). Methods ·Fifteen C57BL/6 mice were divided into three groups: a healthy control group, a simple ligature-induced periodontitis group, and a ligature combined with P.g. LPS injection-induced periodontitis group. After 14 d, the following evaluations were conducted: tooth mobility and probing depth under a stereomicroscope; alveolar bone resorption [bone volume fraction, bone mineral density, the distance from the cemento-enamel junction (CEJ) to the alveolar bone crest (ABC), and the area between CEJ and ABC] analyzed via micro computed tomography (Micro-CT) and stereomicroscopic examination. The serum levels of inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were assessed by enzyme-linked immunosorbent assay (ELISA). Results ·Compared with the simple ligature group, mice in the ligature with P.g. LPS injection group exhibited significantly increased tooth mobility [(2.20±0.45) vs (1.40±0.55)] and probing depth [(1.05±0.21) mm vs (0.58±0.39) mm], with statistically significant differences (P<0.05). The ligature with P.g. LPS injection group also demonstrated significantly reduced bone volume fraction [(16.44%±3.35%) vs (28.97%±7.90%)] and bone mineral density [(0.42±0.04) g/cm3vs (0.55±0.08) g/cm3], as well as increased distance from CEJ to ABC [(0.88±0.03) mm vs (0.74±0.12) mm] and area between CEJ and ABC [(0.34±0.01) mm2vs (0.30±0.02) mm2], all with statistically significant differences (all P<0.05). Additionally, serum levels of TNF-α and IL-1β were significantly elevated in the ligature with P.g. LPS injection group compared to the simple ligature group (both P<0.05). Conclusion ·The method of ligature combined with continuous P.g. LPS injection is more effective for constructing a severe periodontitis mouse model, making it suitable for studying the progression and treatment of severe periodontitis.

参考文献

1 LIN P Y, NIIMI H, OHSUGI Y, et al. Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease[J]. Int J Mol Sci, 2021, 22(16): 8900.
2 HAJISHENGALLIS G, CHAVAKIS T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440.
3 World Health Organization. Global oral health status report: towards universal health coverage for oral health by 2030 [EB/OL]. [2024-08-31]. https://www.who.int/team/noncommunicable-diseases/global-status-report-on-oral-health-2022.
4 OZ H S, PULEO D A. Animal models for periodontal disease[J]. J Biomed Biotechnol, 2011, 2011: 754857.
5 KANTARCI A, HASTURK H, VAN DYKE T E. Animal models for periodontal regeneration and peri-implant responses[J]. Periodontol 2000, 2015, 68(1): 66-82.
6 HAJISHENGALLIS G. Illuminating the oral microbiome and its host interactions: animal models of disease[J]. FEMS Microbiol Rev, 2023, 47(3): fuad018.
7 ROJAS C, GARCíA M P, POLANCO A F, et al. Humanized mouse models for the study of periodontitis: an opportunity to elucidate unresolved aspects of its immunopathogenesis and analyze new immunotherapeutic strategies[J]. Front Immunol, 2021, 12: 663328.
8 高丽, 于晓潜, 蔡宇. 丝线结扎及局部涂抹牙龈卟啉单胞菌对小鼠牙槽骨骨吸收的影响[J]. 北京大学学报(医学版), 2017, 49(1): 31-35.
  GAO L, YU X Q, CAI Y. Effect of molar ligation and local Porphyromonas gingivalis inoculation on alveolar bone loss in the mouse[J]. Journal of Peking University (Health Sciences), 2017, 49(1): 31-35.
9 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 实验室生物安全通用要求: GB 19489—2008[S]. 北京: 中国标准出版社, 2009.
  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration. Laboratories general requirements for biosafety: GB19489—2008[S]. Beijing: Standards Press of China, 2009.
10 WANG X, TONG Y X, ZHANG J Y, et al. Neuroinflammation changes with periodontal inflammation status during periodontitis in wild-type mice[J]. Oral Dis, 2021, 27(4): 1001-1011.
11 SOUZA J A C, MAGALH?ES F A C, OLIVEIRA G J P L, et al. Pam2CSK4 (TLR2 agonist) induces periodontal destruction in mice[J]. Braz Oral Res, 2020, 34: e012.
12 束蓉, 倪靖. 2018牙周病和植体周病国际新分类: 牙周炎分期分级疾病定义系统临床应用体会[J]. 口腔医学, 2020, 40(1): 1-6.
  SHU R, NI J. 2018 International classification of periodontal diseases and implant diseases: clinical application of staging and grading of periodontitis[J]. Stomatology, 2020, 40(1): 1-6.
13 MARCHESAN J, GIRNARY M S, JING L, et al. An experimental murine model to study periodontitis[J]. Nat Protoc, 2018, 13: 2247-2267.
14 SCANU A, GIRAUDO C, GALUPPINI F, et al. Periodontal injection of lipopolysaccharide promotes arthritis development in mice[J]. Inflammation, 2019, 42(3): 1117-1128.
15 BAI L, CHEN B Y, LIU Y, et al. A mouse periodontitis model with humanized oral bacterial community[J]. Front Cell Infect Microbiol, 2022, 12: 842845.
16 HARIYANI N, HALIMAH A N, AL-JUNAID M, et al. Mouse periodontitis models using whole Porphyromonas gingivalis bacteria induction[J]. Saudi Dent J, 2021, 33(8): 819-825.
17 de MOLON R S, PARK C H, JIN Q M, et al. Characterization of ligature-induced experimental periodontitis[J]. Microsc Res Tech, 2018, 81(12): 1412-1421.
18 LI S Y, ZENG W M, LIU G J, et al. Evaluation of morphological, histological, and immune-related cellular changes in ligature-induced experimental periodontitis in mice[J]. J Dent Sci, 2023, 18(4): 1716-1722.
19 SUH J S, KIM S, BOSTR?M K I, et al. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial-mesenchymal transition in mice[J]. Int J Oral Sci, 2019, 11(3): 21.
20 BLASCO-BAQUE V, GARIDOU L, POMIé C, et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response[J]. Gut, 2017, 66(5): 872-885.
21 CHEN X T, WAN Z, YANG L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA[J]. J Nanobiotechnology, 2022, 20(1): 110.
22 TANG Y, QI Y D, CHEN Y, et al. Erythrocyte-mimicking nanovesicle targeting Porphyromonas gingivalis for periodontitis[J]. ACS Nano, 2024, 18(32): 21077-21090.
23 HUANG H Y, PAN W Y, WANG Y F, et al. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis[J]. Nat Commun, 2022, 13(1): 5925.
文章导航

/