收稿日期: 2024-10-10
录用日期: 2024-12-10
网络出版日期: 2025-04-21
基金资助
国家自然科学基金(81802226);上海市浦江人才计划(2019PJD038);2020年上海市“医苑新星”青年医学人才培养资助计划;上海交通大学医学院“双百人”项目(2022-017);上海市第六人民医院优秀人才培育项目(ynyq202101)
Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels
Received date: 2024-10-10
Accepted date: 2024-12-10
Online published: 2025-04-21
Supported by
National Natural Science Foundation of China(81802226);Program of Pujiang Talents of Shanghai(2019PJD038);Shanghai "Rising Stars of Medical Talent" Youth Development Program in 2020;"Two-hundred Talents" Program of Shanghai Jiao Tong University School of Medicine(2022-017);Shanghai Sixth People's Hospital Excellent Young Scientist Development Program(ynyq202101)
活性氧(reactive oxygen species,ROS)是骨组织受损伤后常见的产物。如果ROS不能被及时清除,可在细胞内引发氧化应激,从而对骨组织的再生产生负面影响。近年来,随着研究的深入,能够降低ROS水平的纳米材料在促进骨组织再生方面的作用日益凸显。目前用于降低ROS水平的纳米材料,主要包括经表面修饰和微结构设计的纳米材料、掺杂改性无机材料的纳米材料、功能化聚合物材料及水凝胶、纳米酶材料。但这些纳米材料在临床应用时仍然存在一定局限性,主要原因是其可能具有细胞毒性,且缺乏足够的临床试验数据。该文对利用纳米材料降低ROS水平以促进骨再生的研究进行总结,为未来设计和开发促进骨组织再生的新型纳米材料提供思路。
鲁佳艺 , 刘锦喆 , 郭尚春 , 陶诗聪 . 纳米材料通过降低活性氧水平促进骨组织再生的研究进展[J]. 上海交通大学学报(医学版), 2025 , 45(4) : 487 -492 . DOI: 10.3969/j.issn.1674-8115.2025.04.011
Reactive oxygen species (ROS) are common products of bone tissue injury. If ROS cannot be removed in time, oxidative stress will be induced in the cells, which will have a negative effect on the regeneration of bone tissue. In recent years, with the deepening of research, nanomaterials capable of reducing ROS levels have shown increasing potential in promoting bone tissue regeneration. Currently, nanomaterials applied to reduce ROS levels mainly include those with surface modifications and microstructural designs, dopant-modified inorganic materials, functionalized polymeric materials and hydrogels, and nano-enzymatic materials. However, the clinical application of these nanomaterials is still limited due to their potential cytotoxicity and the lack of sufficient clinical trials. This literature review summarises the research on the use of nanomaterials to reduce ROS levels to promote bone regeneration and provides ideas for the future design and development of novel nanomaterials in this field.
Key words: nanomaterials; reactive oxygen species; bone regeneration; antioxidant
1 | YUDOH K, SUGISHITA Y, SUZUKI-TAKAHASHI Y. Bone development and regeneration 2.0[J]. Int J Mol Sci, 2023, 24(10): 8761. |
2 | SAHOO B M, BANIK B K, BORAH P, et al. Reactive oxygen species (ROS): key components in cancer therapies[J]. Anticancer Agents Med Chem, 2022, 22(2): 215-222. |
3 | BOTTJE W G. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria[J]. Poult Sci, 2019, 98(10): 4223-4230. |
4 | ZHAO R Z, JIANG S, ZHANG L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1): 3-15. |
5 | LI Z M, ZHAO T F, DING J, et al. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury[J]. Bioact Mater, 2023, 19: 550-568. |
6 | GUO Y, GUAN T, SHAFIQ K, et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev, 2023, 88: 101955. |
7 | SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031. |
8 | ZHOU L, ZHANG Y F, YANG F H, et al. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway[J]. Cell Commun Signal, 2021, 19(1): 58. |
9 | GAO Z, GAO Z, ZHANG H, et al. Targeting STING: from antiviral immunity to treat osteoporosis[J]. Front Immunol, 2022, 13: 1095577. |
10 | MUIRE P J, LOFGREN A L, SHIELS S M, et al. Fracture healing in a polytrauma rat model is influenced by mtDNA: cgas complex mediated pro-inflammation[J]. J Exp Orthop, 2023, 10(1): 90. |
11 | HUANG L, LU S Y, BIAN M X, et al. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway[J]. Exp Cell Res, 2023, 430(1): 113717. |
12 | ARTHUR A, GRONTHOS S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci, 2020, 21(24): E97599759. |
13 | LIN B H, MA R X, WU J T, et al. Cinnamaldehyde alleviates bone loss by targeting oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in BMSCs and ovariectomized mice[J]. J Agric Food Chem, 2023, 71(45): 17362-17378. |
14 | HE Z, SUN C, MA Y, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel[J]. Adv Mater, 2024, 36(9): e2306552. |
15 | JOMOVA K, ALOMAR S Y, ALWASEL S H, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Arch Toxicol, 2024, 98(5): 1323-1367. |
16 | EL-FIQI A, ALLAM R, KIM H W. Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties[J]. Colloids Surf B Biointerfaces, 2021, 206: 111932. |
17 | PESARAKLOU A, MATIN M M. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior[J]. Nanomedicine (Lond), 2020, 15(17): 1709-1718. |
18 | TU C X, LU H D, ZHOU T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J]. Biomaterials, 2022, 286: 121597. |
19 | JUNEJO B, SOLANGI Q A, THANI A S B, et al. Physical properties and pharmacological applications of Co3O4, CuO, NiO and ZnO nanoparticles[J]. World J Microbiol Biotechnol, 2023, 39(8): 220. |
20 | FU Y, CUI S, LUO D, et al. Novel inorganic nanomaterial-based therapy for bone tissue regeneration[J]. Nanomaterials (Basel), 2021, 11(3): 789. |
21 | RASOOL N, NEGI D, SINGH Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis[J]. ACS Biomater Sci Eng, 2023, 9(6): 3535-3545. |
22 | TAO Z S, LI T L, YANG M, et al. Silibinin can promote bone regeneration of selenium hydrogel by reducing the oxidative stress pathway in ovariectomized rats[J]. Calcif Tissue Int, 2022, 110(6): 723-735. |
23 | LEE S C, LEE N H, PATEL K D, et al. The effect of selenium nanoparticles on the osteogenic differentiation of MC3T3-E1 cells[J]. Nanomaterials (Basel), 2021, 11(2): 557. |
24 | CHENG W, WEN J. Now and future: development and perspectives of using polyphenol nanomaterials in environmental pollution control[J]. Coordin Chem Rev, 2022, 473: 214825. |
25 | ALCALDE B, GRANADOS M, SAURINA J. Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods[J]. Antioxidants (Basel), 2019, 8(11): E523. |
26 | CARUSO F, INCERPI S, PEDERSEN J, et al. Aromatic polyphenol π-π interactions with superoxide radicals contribute to radical scavenging and can make polyphenols mimic superoxide dismutase activity[J]. Curr Issues Mol Biol, 2022, 44(11): 5209-5220. |
27 | GUO Q, YANG S, NI G, et al. The preparation and effects of organic-inorganic antioxidative biomaterials for bone repair[J]. Biomedicines, 2023, 12(1): 70. |
28 | XU Z, WANG T, LIU J. Recent development of polydopamine anti-bacterial nanomaterials[J]. Int J Mol Sci, 2022, 23(13): 7278. |
29 | WU H, ZHAO C, LIN K, et al. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation[J]. Front Bioeng Biotechnol, 2022, 10: 952500. |
30 | MAVRIDI-PRINTEZI A, GIORDANI S, MENICHETTI A, et al. The dual nature of biomimetic melanin[J]. Nanoscale, 2024, 16(1): 299-308. |
31 | JODKO-PIóRECKA K, SIKORA B, KLUZEK M, et al. Antiradical activity of dopamine, L-DOPA, adrenaline, and noradrenaline in water/methanol and in liposomal systems[J]. J Org Chem, 2022, 87(3): 1791-1804. |
32 | HUANG Y Q, DU Z Y, LI K, et al. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration[J]. Adv Fiber Mater, 2022, 4(4): 894-907. |
33 | HANG R, ZHAO Y, ZHANG Y, et al. The role of nanopores constructed on the micropitted titanium surface in the immune responses of macrophages and the potential mechanisms[J]. J Mater Chem B, 2022, 10(38): 7732-7743. |
34 | LAO A, WU J, LI D, et al. Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J]. Small, 2023, 19(36): e2206919. |
35 | LIU Z, WANG T, ZHANG L, et al. Metal-phenolic networks-reinforced extracellular matrix scaffold for bone regeneration via combining radical-scavenging and photo-responsive regulation of microenvironment[J]. Adv Healthc Mater, 2024, 13(15): e2304158. |
36 | ZHOU T, YAN L, XIE C, et al. A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly[J]. Small, 2019, 15(25): e1805440. |
37 | YANG R, YAN Y R, WU Z, et al. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway[J]. Mater Sci Eng C, 2021, 131: 112513. |
38 | LI C, WANG Q, GU X, et al. Porous Se@SiO2 nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model[J]. Int J Nanomedicine, 2019, 14: 3845-3860. |
39 | HUANG L, ZHANG S H, BIAN M X, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect[J]. Acta Biomater, 2024, 180: 82-103. |
40 | WU Q, HU L, YAN R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration[J]. Bone Res, 2022, 10(1): 55. |
41 | BOUCHEZ C, DEVIN A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway[J]. Cells, 2019, 8(4): E287. |
42 | HUANG J Y, LI R Q, YANG J H, et al. Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration[J]. Bioact Mater, 2021, 6(10): 3164-3176. |
43 | LI J M, DENG C J, LIANG W Y, et al. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS[J]. Bioact Mater, 2021, 6(11): 3839-3850. |
44 | DENG Q S, LI X R, LIU P L, et al. 3D cryo-printed hierarchical porous scaffolds harmonized with hybrid nanozymes for combinatorial mitochondrial therapy: enhanced diabetic bone regeneration viamicromilieu remodeling[J]. Adv Funct Mater, 2024, 34(39): 2403145. |
45 | SHU C, QIN C, WU A, et al. 3D printing of cobalt-incorporated chloroapatite bioceramic composite scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Healthc Mater, 2024, 13(13): e2303217. |
46 | XIE Y, XIAO S, HUANG L, et al. Cascade and ultrafast artificial antioxidases alleviate inflammation and bone resorption in periodontitis[J]. ACS Nano, 2023, 17(15): 15097-15112. |
47 | SHU C, QIN C, CHEN L, et al. Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Sci (Weinh), 2023, 10(13): e2206875. |
48 | TIAN Q, WANG W, CAO L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate[J]. Adv Mater, 2022, 34(43): e2207275. |
49 | DING Y, MA R, LIU G, et al. Fabrication of a new hyaluronic acid/gelatin nanocomposite hydrogel coating on titanium-based implants for treating biofilm infection and excessive inflammatory response[J]. ACS Appl Mater Interfaces, 2023, 15(10): 13783-13801. |
/
〈 |
|
〉 |