JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (7): 953-958.doi: 10.3969/j.issn.1674-8115.2021.07.017
• Review • Previous Articles
Ting-wang SHI(), Yun-feng CHEN()
Online:
2021-07-28
Published:
2021-08-03
Contact:
Yun-feng CHEN
E-mail:tingwangshi@sina.com;drchenyunfeng@sina.com
Supported by:
CLC Number:
Ting-wang SHI, Yun-feng CHEN. Preparation of cell membrane-coated nanoparticles and its application to antimicrobial[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 953-958.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.07.017
Category | Targeting infection | Neutralizing toxin | Vaccine development |
---|---|---|---|
Source of cell membrane | Red blood cell, macrophage, platelet, bacteria,neutrophil, gastric epithelial cell | Red blood cell, macrophage, platelet, genetically engineered cell | Red blood cell, bacteria |
Core of CMCNP | GSNC, nanomotor, antibiotic-loading PLGA/gelatin/PCL-PEG | PLGA, hydrogel, Fe3O4 | PLGA |
Role of the core | Photothermic therapy, actuation, drug delivery | Stabilizing cell membrane | Stabilizing cell membrane |
Antibacterial mechanism | Cell membrane targeting infection, core killing bacteria | Cell membrane adsorbing toxins | Cell membrane adsorbing toxins and stimulating immune response |
Tab 1 Comparison of characteristics of CMCNP in different anti-infection strategies
Category | Targeting infection | Neutralizing toxin | Vaccine development |
---|---|---|---|
Source of cell membrane | Red blood cell, macrophage, platelet, bacteria,neutrophil, gastric epithelial cell | Red blood cell, macrophage, platelet, genetically engineered cell | Red blood cell, bacteria |
Core of CMCNP | GSNC, nanomotor, antibiotic-loading PLGA/gelatin/PCL-PEG | PLGA, hydrogel, Fe3O4 | PLGA |
Role of the core | Photothermic therapy, actuation, drug delivery | Stabilizing cell membrane | Stabilizing cell membrane |
Antibacterial mechanism | Cell membrane targeting infection, core killing bacteria | Cell membrane adsorbing toxins | Cell membrane adsorbing toxins and stimulating immune response |
1 | Mi G, Shi D, Wang M, et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces[J]. Adv Healthc Mater, 2018, 7(13): e1800103. |
2 | Hemeg HA. Nanomaterials for alternative antibacterial therapy[J]. Int J Nanomedicine, 2017, 12: 8211-8225. |
3 | Rizvi SMD, Hussain T, Ahmed ABF, et al. Gold nanoparticles: a plausible tool to combat neurological bacterial infections in humans[J]. Biomed Pharmacother, 2018, 107: 7-18. |
4 | Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis[J]. Expert Rev Anti Infect Ther, 2017, 15(9): 851-860. |
5 | Wang C, Wang YL, Zhang LL, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J]. Adv Mater, 2018, 30(46): e1804023. |
6 | Wang KY, Lei YT, Xia DL, et al. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation[J]. Colloids Surfaces B: Biointerfaces, 2020, 188: 110755. |
7 | Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: the role of the EPS matrix[J]. Trends Microbiol, 2019, 27(11): 915-926. |
8 | Zou SJ, Wang BL, Wang C, et al. Cell membrane-coated nanoparticles: research advances[J]. Nanomedicine (Lond), 2020, 15(6): 625-641. |
9 | Li JX, Angsantikul P, Liu WJ, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Adv Mater, 2018, 30(2). DOI: 10.1002/adma.201704800. |
10 | Esteban-Fernández de Ávila B, Angsantikul P, Ramírez-Herrera DE, et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins[J]. Sci Robot, 2018, 3(18): eaat0485. |
11 | Qin M, Du GS, Sun X. Biomimetic cell-derived nanocarriers for modulating immune responses[J]. Biomater Sci, 2020, 8(2): 530-543. |
12 | Choi B, Park W, Park SB, et al. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications[J]. Methods, 2020, 177: 2-14. |
13 | Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121. |
14 | Copp JA, Fang RH, Luk BT, et al. Clearance of pathological antibodies using biomimetic nanoparticles[J]. PNAS, 2014, 111(37): 13481-13486. |
15 | Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles[J]. Nano Lett, 2015, 15(2): 1403-1409. |
16 | Wang S, Gao J, Li M, et al. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs)[J]. Biomaterials, 2018, 187: 28-38. |
17 | Cao HQ, Dan ZL, He XY, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer[J]. ACS Nano, 2016, 10(8): 7738-7748. |
18 | Gao C, Lin Z, Jurado-Sánchez B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30): 4056-4062. |
19 | Ai X, Hu M, Wang Z, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications[J]. Bioconjug Chem, 2018, 29(4): 838-851. |
20 | Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4): 3496-3505. |
21 | Zhang J, Gao W, Fang RH, et al. Synthesis of nanogels via cell membrane-templated polymerization[J]. Small, 2015, 11(34): 4309-4313. |
22 | Hu CM, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. PNAS, 2011, 108(27): 10980-10985. |
23 | Wei XL, Ran DN, Campeau A, et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria[J]. Nano Lett, 2019, 19(7): 4760-4769. |
24 | Shen S, Han F, Yuan AR, et al. Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and preventing endotoxemia[J]. Biomaterials, 2019, 189: 60-68. |
25 | Dehaini D, Wei XL, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Adv Mater, 2017, 29(16): 1606209. |
26 | Gao F, Xu LL, Yang BQ, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infect Dis, 2019, 5(2): 218-227. |
27 | Pang X, Liu X, Cheng Y, et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections[J]. Adv Mater, 2019, 31(35): e1902530. |
28 | Lin LC, Chattopadhyay S, Lin JC, et al. Advances and opportunities in nanoparticle- and nanomaterial-based vaccines against bacterial infections[J]. Adv Healthc Mater, 2018, 7(13): e1701395. |
29 | Rao L, Tian R, Chen XY. Cell-membrane-mimicking nanodecoys against infectious diseases[J]. ACS Nano, 2020, 14(3): 2569-2574. |
30 | Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5): 637-650. |
31 | Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets[J]. Nat Rev Microbiol, 2006, 4(6): 445-457. |
32 | Spaan AN, Surewaard BG, Nijland R, et al. Neutrophils versus Staphylococcus aureus: a biological tug of war[J]. Annu Rev Microbiol, 2013, 67: 629-650. |
33 | Garzoni C, Kelley WL. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus[J]. EMBO Mol Med, 2011, 3(3): 115-117. |
34 | Lehar SM, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578): 323-328. |
35 | Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?[J]. Nat Rev Microbiol, 2011, 9(3): 215-222. |
36 | Dong XY, Zhang CY, Gao J, et al. Targeting of nanotherapeutics to infection sites for antimicrobial therapy[J]. Adv Ther, 2019, 2(11): 1900095. |
37 | Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection[J]. J Antimicrob Chemother, 2013, 68(2): 257-274. |
38 | Zhang CY, Gao J, Wang ZJ. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management[J]. Adv Mater, 2018, 30(43): e1803618. |
39 | Chu D, Dong X, Shi X, et al. Neutrophil-based drug delivery systems[J]. Adv Mater, 2018, 30(22): e1706245. |
40 | Li LL, Xu JH, Qi GB, et al. Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery[J]. ACS Nano, 2014, 8(5): 4975-4983. |
41 | Yan HZ, Shao D, Lao YH, et al. Engineering cell membrane-based nanotherapeutics to target inflammation[J]. Adv Sci (Weinh), 2019, 6(15): 1900605. |
42 | Thamphiwatana S, Angsantikul P, Escajadillo T, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management[J]. Proc Natl Acad Sci USA, 2017, 114(43): 11488-11493. |
43 | Wang F, Fang RH, Luk BT, et al. Nanoparticle-based antivirulence vaccine for the management of methicillin-resistant Staphylococcus aureus skin infection[J]. Adv Funct Mater, 2016, 26(10): 1628-1635. |
44 | Hu CM, Fang RH, Luk BT, et al. Nanoparticle-detained toxins for safe and effective vaccination[J]. Nat Nanotechnol, 2013, 8(12): 933-938. |
45 | Wei XL, Gao J, Wang F, et al. In situ capture of bacterial toxins for antivirulence vaccination[J]. Adv Mater, 2017, 29(33): 1701644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||