Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (1): 125-131.doi: 10.3969/j.issn.1674-8115.2023.01.017
• Review • Previous Articles
Received:
2022-05-29
Accepted:
2022-09-28
Online:
2022-12-19
Published:
2022-12-19
Contact:
WANG Long
E-mail:liuweiwei95@qq.com;dragonking1870@126.com
Supported by:
CLC Number:
LIU Weiwei, WANG Long. Research progress in the correlation and treatment of menopause and non-alcoholic fatty liver disease in women[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 125-131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.01.017
1 | LOOMBA R, FRIEDMAN S L, SHULMAN G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564. |
2 | WANG Z L, XU M, HU Z G, et al. Sex-specific prevalence of fatty liver disease and associated metabolic factors in Wuhan, south central China[J]. Eur J Gastroenterol Hepatol, 2014, 26(9): 1015-1021. |
3 | LONG M T, PEDLEY A, MASSARO J M, et al. A simple clinical model predicts incident hepatic steatosis in a community-based cohort: the Framingham Heart Study[J]. Liver Int, 2018, 38(8): 1495-1503. |
4 | ARSHAD T, GOLABI P, PAIK J, et al. Prevalence of nonalcoholic fatty liver disease in the female population[J]. Hepatol Commun, 2018, 3(1): 74-83. |
5 | KLAIR J S, YANG J D, ABDELMALEK M F, et al. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease[J]. Hepatology, 2016, 64(1): 85-91. |
6 | PARK S H, PARK Y E, LEE J, et al. Lack of association between early menopause and non-alcoholic fatty liver disease in postmenopausal women[J]. Climacteric, 2020, 23(2): 173-177. |
7 | JABALLAH A, SOLTANI I, BAHIA W, et al. The relationship between menopause and metabolic syndrome: experimental and bioinformatics analysis[J]. Biochem Genet, 2021, 59(6): 1558-1581. |
8 | MUMUSOGLU S, YILDIZ B O. Metabolic syndrome during menopause[J]. Curr Vasc Pharmacol, 2019, 17(6): 595-603. |
9 | CHUNG S I, RYU S N, KANG M Y. Changes in bone metabolism and antioxidant defense systems in menopause-induced rats fed bran extract from dark purple rice (Oryza sativa L. Cv. Superjami)[J]. Nutrients, 2021, 13(9): 2926. |
10 | DUPUIS M L, PAGANO M T, PIERDOMINICI M, et al. The role of vitamin D in autoimmune diseases: could sex make the difference?[J]. Biol Sex Differ, 2021, 12(1): 12. |
11 | MELGUIZO-RODRÍGUEZ L, COSTELA-RUIZ V J, GARCÍA-RECIO E, et al. Role of vitamin D in the metabolic syndrome[J]. Nutrients, 2021, 13(3): 830. |
12 | WAN H, ZHANG K, WANG Y Y, et al. The associations between gonadal hormones and serum uric acid levels in men and postmenopausal women with diabetes[J]. Front Endocrinol (Lausanne), 2020, 11: 55. |
13 | WANG X H, JIANG W R, ZHANG M Y, et al. The visceral fat area to leg muscle mass ratio is significantly associated with the risk of hyperuricemia among women: a cross-sectional study[J]. Biol Sex Differ, 2021, 12(1): 17. |
14 | 刘勤, 牛春燕. 由“二次打击”到“多重打击”: 发病机制的演变带给非酒精性脂肪性肝病的治疗启示[J]. 世界华人消化杂志, 2019, 27(19): 1171-1178. |
LIU Q, NIU C Y. From "two hit theory" to "multiple hit theory": implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease[J]. World Chinese Journal of Digestology, 2019, 27(19): 1171-1178. | |
15 | YARIBEYGI H, FARROKHI F R, BUTLER A E, et al. Insulin resistance: review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161. |
16 | VENETSANAKI V, POLYZOS S A. Menopause and non-alcoholic fatty liver disease: a review focusing on therapeutic perspectives[J]. Curr Vasc Pharmacol, 2019, 17(6): 546-555. |
17 | WHITCROFT S, HERRIOT A. Insulin resistance and management of the menopause: a clinical hypothesis in practice[J]. Menopause Int, 2011, 17(1): 24-28. |
18 | DE MUTSERT R, GAST K, WIDYA R, et al. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands epidemiology of obesity study[J]. Metab Syndr Relat Disord, 2018, 16(1): 54-63. |
19 | ZENG X, XIE Y J, LIU Y T, et al. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity[J]. Clin Chim Acta, 2020, 502: 214-221. |
20 | SEIDU T, MCWHORTER P, MYER J, et al. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice[J]. J Endocrinol, 2021, 250(2): 49-65. |
21 | WANG J, WU D C, GUO H, et al. Hyperandrogenemia and insulin resistance: the chief culprit of polycystic ovary syndrome[J]. Life Sci, 2019, 236: 116940. |
22 | KUR P, KOLASA-WOŁOSIUK A, MISIAKIEWICZ-HAS K, et al. Sex hormone-dependent physiology and diseases of liver[J]. Int J Environ Res Public Health, 2020, 17(8): 2620. |
23 | DELLA T S. Beyond the x factor: relevance of sex hormones in NAFLD pathophysiology[J]. Cells, 2021, 10(9): 2502. |
24 | XIA F Z, XU X, ZHAI H L, et al. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats[J]. Reprod Biol Endocrinol, 2013, 11: 106. |
25 | QU X Q, DONNELLY R. Sex hormone-binding globulin (SHBG) as an early biomarker and therapeutic target in polycystic ovary syndrome[J]. Int J Mol Sci, 2020, 21(21): 8191. |
26 | SOWERS M, DERBY C, JANNAUSCH M L, et al. Insulin resistance, hemostatic factors, and hormone interactions in pre- and perimenopausal women: SWAN[J]. J Clin Endocrinol Metab, 2003, 88(10): 4904-4910. |
27 | YAMAZAKI H, KUSHIYAMA A, SAKODA H, et al. Protective effect of sex hormone-binding globulin against metabolic syndrome: in vitro evidence showing anti-inflammatory and lipolytic effects on adipocytes and macrophages[J]. Mediators Inflamm, 2018, 2018: 3062319. |
28 | DISTEFANO J K. NAFLD and NASH in postmenopausal women: implications for diagnosis and treatment[J]. Endocrinology, 2020, 161(10): bqaa134. |
29 | YANG M, LIU Q L, HUANG T L, et al. Dysfunction of estrogen-related receptor α-dependent hepatic VLDL secretion contributes to sex disparity in NAFLD/NASH development[J]. Theranostics, 2020, 10(24): 10874-10891. |
30 | BITIRIM C V, OZER Z B, AKCALI K C. Estrogen receptor α regulates the expression of adipogenic genes genetically and epigenetically in rat bone marrow-derived mesenchymal stem cells[J]. Peer J, 2021, 9: e12071. |
31 | 李凤娟, 魏苏宁, 王绿娅, 等. 雌激素抑制脂滴包被蛋白perilipin 2减少肝细胞脂质沉积[J]. 心肺血管病杂志, 2018, 37(7): 687-691. |
LI F J, WEI S N, WANG L Y, et al. Estrogen reduces lipid deposition in liver cells by inhibiting perilipin 2[J]. Journal of Cardiovascular and Pulmonary Diseases, 2018, 37(7): 687-691. | |
32 | TRAMUNT B, SMATI S, GRANDGEORGE N, et al. Sex differences in metabolic regulation and diabetes susceptibility[J]. Diabetologia, 2020, 63(3): 453-461. |
33 | IWASA T, MATSUZAKI T, MAYILA Y, et al. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats[J]. Neuropeptides, 2019, 75: 49-57. |
34 | MA H, SPRECHER H W, KOLATTUKUDY P E. Estrogen-induced production of a peroxisome proliferator-activated receptor (PPAR) ligand in a PPARγ-expressing tissue[J]. J Biol Chem, 1998, 273(46): 30131-30138. |
35 | NIRANJAN M K, KOIRI R K, SRIVASTAVA R. Expression of estrogen receptor α in response to stress and estrogen antagonist tamoxifen in the shell gland of Gallus gallus domesticus: involvement of anti-oxidant system and estrogen[J]. Stress, 2021, 24(3): 261-272. |
36 | BESSE-PATIN A, LÉVEILLÉ M, OROPEZA D, et al. Estrogen signals through peroxisome proliferator-activated receptor‑γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease[J]. Gastroenterology, 2017, 152(1): 243-256. |
37 | HIGASHI T, FRIEDMAN S L, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. |
38 | CORTES E, LACHOWSKI D, RICE A, et al. Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor[J]. Oncogene, 2019, 38(16): 2910-2922. |
39 | LEE Y H, SON J Y, KIM K S, et al. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in sprague-dawley rats[J]. Int J Mol Sci, 2019, 20(15): 3709. |
40 | SHIMIZU I, MIZOBUCHI Y, YASUDA M, et al. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro[J]. Gut, 1999, 44(1): 127-136. |
41 | LOBO R A. Hormone-replacement therapy: current thinking[J]. Nat Rev Endocrinol, 2017, 13(4): 220-231. |
42 | PAPAEFTHYMIOU A, DOULBERIS M, KARAFYLLIDOU K, et al. Effect of spironolactone on pharmacological treatment of nonalcoholic fatty liver disease[J]. Minerva Endocrinol (Torino), 2021. DOI: 10. 23736/S2724-6507.21.03564-8. |
43 | LI H, JIA E N, HONG Y, et al. Phytoestrogens and NAFLD: possible mechanisms of action[J]. Mini Rev Med Chem, 2020, 20(7): 578-583. |
44 | ZAMANI-GARMSIRI F, HASHEMNIA S M R, SHABANI M, et al. Combination of metformin and genistein alleviates non-alcoholic fatty liver disease in high-fat diet-fed mice[J]. J Nutr Biochem, 2021, 87: 108505. |
45 | LUO Z H, LIU Z W, MAO Y, et al. Cajanolactone A, a stilbenoid from Cajanus cajan, prevents ovariectomy-induced obesity and liver steatosis in mice fed a regular diet[J]. Phytomedicine, 2020, 78: 153290. |
46 | CHEN Y R, QUE R Y, ZHANG N, et al. Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling[J]. Mol Biol Rep, 2021, 48(12): 7853-7863. |
47 | LIN L B, ZHOU M G, QUE R Y, et al. Saikosaponin-d protects against liver fibrosis by regulating the estrogen receptor‑β/NLRP3 inflammasome pathway[J]. Biochem Cell Biol, 2021, 99(5): 666-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||