Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (3): 350-356.doi: 10.3969/j.issn.1674-8115.2022.03.013
• Clinical research • Previous Articles Next Articles
DU Qingqing1(), HOU Zexin1, LI Jun2(), HU Ying3, CAO Guolei4, LI Siyuan1
Received:
2021-11-25
Online:
2022-03-28
Published:
2022-05-09
Contact:
LI Jun
E-mail:xjduqq@163.com;xjlijun@163.com
Supported by:
CLC Number:
DU Qingqing, HOU Zexin, LI Jun, HU Ying, CAO Guolei, LI Siyuan. Correlation between FRA-2 mRNA expression, DNA methylation level and metabolic syndrome[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 350-356.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.03.013
Target gene | Primer sequence(5′→3′) |
---|---|
RT-PCR | |
FRA-2 | up-stream:CCAGATGAAATGTCATGGC |
down-stream:CTCGGTTTGGTAGACTTGGA | |
β-actin | up-stream:CCCAGCACAATGAAGATCAAGATCAT |
down-stream:ATCTGCTGGAAGGTGGACAGCG | |
MALDI-TOF-MS | |
FRA-2 | up-stream:AGGAAGAGAGGTAGGTTTAGGAGAGGGGTGTG |
down-stream:CAGTAATACGACTCACTATAGGGAGAAGGCTACAACCCCCAAAACTTAACTAAAAC |
Tab 1 Primer sequences for PCR
Target gene | Primer sequence(5′→3′) |
---|---|
RT-PCR | |
FRA-2 | up-stream:CCAGATGAAATGTCATGGC |
down-stream:CTCGGTTTGGTAGACTTGGA | |
β-actin | up-stream:CCCAGCACAATGAAGATCAAGATCAT |
down-stream:ATCTGCTGGAAGGTGGACAGCG | |
MALDI-TOF-MS | |
FRA-2 | up-stream:AGGAAGAGAGGTAGGTTTAGGAGAGGGGTGTG |
down-stream:CAGTAATACGACTCACTATAGGGAGAAGGCTACAACCCCCAAAACTTAACTAAAAC |
Clinical data | Control group (n=80) | Non-MS group (n=80) | MS group (n=80) | P value |
---|---|---|---|---|
Gender(male/female)/n | 41/39 | 40/40 | 41/39 | 0.984 |
Age/year | 49.81±9.13 | 50.08±15.10 | 55.90±7.96 | 0.001 |
BMI/(kg·m-2) | 22.36±1.41 | 24.94±2.83 | 29.15±3.19 | 0.000 |
WC/cm | 80.91±4.34 | 92.91±10.28 | 103.82±9.14 | 0.000 |
DBP/mmHg | 72.28±4.01 | 80.71±15.00 | 93.45±14.68 | 0.000 |
SBP/mmHg | 118.90±7.10 | 130.34±20.22 | 144.08±18.02 | 0.000 |
FPG/(mmol·L-1) | 5.29±0.48 | 5.88±1.92 | 10.40±3.74 | 0.000 |
TAG/(mmol·L-1) | 1.15±0.17 | 1.54±1.04 | 2.18±0.77 | 0.000 |
TC/(mmol·L-1) | 3.92±0.51 | 3.90±0.76 | 5.12±1.04 | 0.000 |
LDL-C/(mmol·L-1) | 1.68±0.64 | 2.05±0.61 | 2.52±0.88 | 0.000 |
HDL-C/(mmol·L-1) | 1.35±0.31 | 1.18±0.31 | 1.00±0.19 | 0.000 |
FINS/(mU·L-1) | 1.35 (1.13, 2.30) | 1.41 (0.98, 2.36) | 1.91 (1.14, 2.84) | 0.016 |
HOMA-IR | 2.38 (1.63, 3.91) | 2.55 (1.54, 4.45) | 5.83 (3.05, 10.28) | 0.000 |
Tab 2 Comparison of general and clinical data among the three groups
Clinical data | Control group (n=80) | Non-MS group (n=80) | MS group (n=80) | P value |
---|---|---|---|---|
Gender(male/female)/n | 41/39 | 40/40 | 41/39 | 0.984 |
Age/year | 49.81±9.13 | 50.08±15.10 | 55.90±7.96 | 0.001 |
BMI/(kg·m-2) | 22.36±1.41 | 24.94±2.83 | 29.15±3.19 | 0.000 |
WC/cm | 80.91±4.34 | 92.91±10.28 | 103.82±9.14 | 0.000 |
DBP/mmHg | 72.28±4.01 | 80.71±15.00 | 93.45±14.68 | 0.000 |
SBP/mmHg | 118.90±7.10 | 130.34±20.22 | 144.08±18.02 | 0.000 |
FPG/(mmol·L-1) | 5.29±0.48 | 5.88±1.92 | 10.40±3.74 | 0.000 |
TAG/(mmol·L-1) | 1.15±0.17 | 1.54±1.04 | 2.18±0.77 | 0.000 |
TC/(mmol·L-1) | 3.92±0.51 | 3.90±0.76 | 5.12±1.04 | 0.000 |
LDL-C/(mmol·L-1) | 1.68±0.64 | 2.05±0.61 | 2.52±0.88 | 0.000 |
HDL-C/(mmol·L-1) | 1.35±0.31 | 1.18±0.31 | 1.00±0.19 | 0.000 |
FINS/(mU·L-1) | 1.35 (1.13, 2.30) | 1.41 (0.98, 2.36) | 1.91 (1.14, 2.84) | 0.016 |
HOMA-IR | 2.38 (1.63, 3.91) | 2.55 (1.54, 4.45) | 5.83 (3.05, 10.28) | 0.000 |
CpG unit | Control group | non-MS group | MS group | P value |
---|---|---|---|---|
CpG 1 | 0.02±0.04 | 0.04±0.07 | 0.04±0.04 | 0.027 |
CpG 3 | 0.01±0.02 | 0.02±0.03 | 0.03±0.03 | 0.000 |
CpG 4.5 | 0.02±0.03 | 0.02±0.03 | 0.10±0.07 | 0.000 |
CpG 6.7 | 0.02±0.02 | 0.02±0.02 | 0.04±0.04 | 0.000 |
CpG 8 | 0.00±0.01 | 0.01±0.01 | 0.03±0.03 | 0.000 |
CpG 9.10 | 0.00±0.01 | 0.01±0.01 | 0.03±0.03 | 0.000 |
CpG 11 | 0.02±0.01 | 0.02±0.02 | 0.03±0.03 | 0.026 |
CpG 12.13.14 | 0.00±0.01 | 0.03±0.05 | 0.10±0.04 | 0.000 |
CpG 15.16.17 | 0.04±0.03 | 0.05±0.05 | 0.07±0.04 | 0.000 |
CpG 19 | 0.01±0.02 | 0.04±0.05 | 0.10±0.06 | 0.000 |
Tab 3 Comparison of DNA methylation levels in each CpG unit
CpG unit | Control group | non-MS group | MS group | P value |
---|---|---|---|---|
CpG 1 | 0.02±0.04 | 0.04±0.07 | 0.04±0.04 | 0.027 |
CpG 3 | 0.01±0.02 | 0.02±0.03 | 0.03±0.03 | 0.000 |
CpG 4.5 | 0.02±0.03 | 0.02±0.03 | 0.10±0.07 | 0.000 |
CpG 6.7 | 0.02±0.02 | 0.02±0.02 | 0.04±0.04 | 0.000 |
CpG 8 | 0.00±0.01 | 0.01±0.01 | 0.03±0.03 | 0.000 |
CpG 9.10 | 0.00±0.01 | 0.01±0.01 | 0.03±0.03 | 0.000 |
CpG 11 | 0.02±0.01 | 0.02±0.02 | 0.03±0.03 | 0.026 |
CpG 12.13.14 | 0.00±0.01 | 0.03±0.05 | 0.10±0.04 | 0.000 |
CpG 15.16.17 | 0.04±0.03 | 0.05±0.05 | 0.07±0.04 | 0.000 |
CpG 19 | 0.01±0.02 | 0.04±0.05 | 0.10±0.06 | 0.000 |
CpG unit | WC | SBP | DBP | FPG | TAG | HDL-C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r value | P value | r value | P value | r value | P value | r value | P value | r value | P value | r value | P value | ||
CpG 1 | 0.188 | 0.004 | 0.190 | 0.003 | 0.201 | 0.002 | 0.124 | 0.055 | 0.157 | 0.015 | -0.175 | 0.007 | |
CpG 3 | 0.218 | 0.001 | 0.298 | 0.000 | 0.183 | 0.004 | 0.226 | 0.000 | 0.136 | 0.035 | -0.165 | 0.010 | |
CpG 4.5 | 0.401 | 0.000 | 0.342 | 0.000 | 0.322 | 0.000 | 0.553 | 0.000 | 0.240 | 0.000 | -0.277 | 0.000 | |
CpG 6.7 | 0.204 | 0.001 | 0.098 | 0.130 | 0.193 | 0.003 | 0.301 | 0.000 | 0.179 | 0.006 | -0.100 | 0.121 | |
CpG 8 | 0.346 | 0.000 | 0.242 | 0.000 | 0.263 | 0.000 | 0.572 | 0.000 | 0.306 | 0.000 | -0.133 | 0.040 | |
CpG 9.10 | 0.501 | 0.000 | 0.320 | 0.000 | 0.348 | 0.000 | 0.539 | 0.000 | 0.401 | 0.000 | -0.275 | 0.000 | |
CpG 11 | 0.059 | 0.362 | -0.058 | 0.375 | -0.028 | 0.669 | 0.116 | 0.073 | -0.003 | 0.958 | -0.024 | 0.714 | |
CpG 12.13.14 | 0.573 | 0.000 | 0.367 | 0.000 | 0.401 | 0.000 | 0.668 | 0.000 | 0.417 | 0.000 | -0.338 | 0.000 | |
CpG 15.16.17 | 0.166 | 0.010 | 0.111 | 0.086 | 0.279 | 0.000 | 0.101 | 0.120 | 0.208 | 0.001 | -0.110 | 0.090 | |
CpG 19 | 0.538 | 0.000 | 0.383 | 0.000 | 0.484 | 0.000 | 0.603 | 0.000 | 0.349 | 0.000 | -0.255 | 0.000 |
Tab 4 Correlation analysis between FRA-2 DNA methylation level and MS risk factors
CpG unit | WC | SBP | DBP | FPG | TAG | HDL-C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r value | P value | r value | P value | r value | P value | r value | P value | r value | P value | r value | P value | ||
CpG 1 | 0.188 | 0.004 | 0.190 | 0.003 | 0.201 | 0.002 | 0.124 | 0.055 | 0.157 | 0.015 | -0.175 | 0.007 | |
CpG 3 | 0.218 | 0.001 | 0.298 | 0.000 | 0.183 | 0.004 | 0.226 | 0.000 | 0.136 | 0.035 | -0.165 | 0.010 | |
CpG 4.5 | 0.401 | 0.000 | 0.342 | 0.000 | 0.322 | 0.000 | 0.553 | 0.000 | 0.240 | 0.000 | -0.277 | 0.000 | |
CpG 6.7 | 0.204 | 0.001 | 0.098 | 0.130 | 0.193 | 0.003 | 0.301 | 0.000 | 0.179 | 0.006 | -0.100 | 0.121 | |
CpG 8 | 0.346 | 0.000 | 0.242 | 0.000 | 0.263 | 0.000 | 0.572 | 0.000 | 0.306 | 0.000 | -0.133 | 0.040 | |
CpG 9.10 | 0.501 | 0.000 | 0.320 | 0.000 | 0.348 | 0.000 | 0.539 | 0.000 | 0.401 | 0.000 | -0.275 | 0.000 | |
CpG 11 | 0.059 | 0.362 | -0.058 | 0.375 | -0.028 | 0.669 | 0.116 | 0.073 | -0.003 | 0.958 | -0.024 | 0.714 | |
CpG 12.13.14 | 0.573 | 0.000 | 0.367 | 0.000 | 0.401 | 0.000 | 0.668 | 0.000 | 0.417 | 0.000 | -0.338 | 0.000 | |
CpG 15.16.17 | 0.166 | 0.010 | 0.111 | 0.086 | 0.279 | 0.000 | 0.101 | 0.120 | 0.208 | 0.001 | -0.110 | 0.090 | |
CpG 19 | 0.538 | 0.000 | 0.383 | 0.000 | 0.484 | 0.000 | 0.603 | 0.000 | 0.349 | 0.000 | -0.255 | 0.000 |
1 | SAKLAYEN M G. The global epidemic of the metabolic syndrome[J]. Curr Hypertens Rep, 2018, 20(2): 12. |
2 | 陈树春. 钠-葡萄糖共转运蛋白2抑制剂对代谢综合征的影响[J]. 中华老年心脑血管病杂志, 2021, 23(12): 1233-1235. |
3 | GREENBERG M V C, BOURC'HIS D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 590-607. |
4 | SAMBLAS M, MILAGRO F I, MARTÍNEZ A. DNA methylation markers in obesity, metabolic syndrome, and weight loss[J]. Epigenetics, 2019, 14(5): 421-444. |
5 | BIRNHUBER A, BIASIN V, SCHNOEGL D, et al. Transcription factor Fra-2 and its emerging role in matrix deposition, proliferation and inflammation in chronic lung diseases[J]. Cell Signal, 2019, 64: 109408. |
6 | DROSOS I, CHALIKIAS G, PAVLAKI M, et al. Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin-inflammation-fibrosis-hypoxia axis[J]. Clin Res Cardiol, 2016, 105(11): 887-900. |
7 | JIANG L, SU H R, WU X Y, et al. Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease[J]. Nat Commun, 2020, 11(1): 1517. |
8 | WRANN C D, EGUCHI J, BOZEC A, et al. FOSL2 promotes leptin gene expression in human and mouse adipocytes[J]. J Clin Invest, 2012, 122(3): 1010-1021. |
9 | PAN S, LI M Y, YU H B, et al. microRNA-143-3p contributes to inflammatory reactions by targeting FOSL2 in PBMCs from patients with autoimmune diabetes mellitus[J]. Acta Diabetol, 2021, 58(1): 63-72. |
10 | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409. |
11 | PEARCE M S, MCCONNELL J C, POTTER C, et al. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles[J]. Int J Epidemiol, 2012, 41(1): 210-217. |
12 | 侯泽鑫, 李思源, 曹国磊, 等. 新疆维吾尔族代谢综合征患者血清FOS相关抗原2蛋白浓度变化及与危险因素个数的关系[J]. 医学研究生学报, 2021, 34(7): 717-720. |
13 | 赵天明, 王增武, 张林峰, 等. 北方农村35岁及以上人群代谢综合征患病情况调查[J]. 中华疾病控制杂志, 2015, 19(5): 439-442, 446. |
14 | Chiurazzi M, Cozzolino M, Orsini R C, et al. Impact of genetic variations and epigenetic mechanisms on the risk of obesity[J]. Int J Mol Sci, 2020, 21(23): 9035. |
15 | LI J, LI S Y, HU Y, et al. The expression level of mRNA, protein, and DNA methylation status of FOSL2 of Uyghur in Xinjiang in type 2 diabetes[J]. J Diabetes Res, 2016, 2016: 5957404. |
16 | LIN J B, LIN S W, WU Y H, et al. Hypomethylation of the angiotensin Ⅱ type Ⅰ receptor (AGTR1) gene along with environmental factors increases the risk for rssential Hypertension[J]. Cardiology, 2017, 137(2): 126-135. |
17 | 岳薇薇, 胡大春. 肾素-血管紧张素-醛固酮系统在高血压遗传病理机制中的研究进展[J]. 医学综述, 2018, 24(22): 4440-4444. |
18 | 全贞玉, 姜允吉, 金海英, 等. 内脂素与代谢综合征及其组分的相关性[J]. 中国慢性病预防与控制, 2014, 22(5): 602-604. |
19 | XIE F F, DENG F Y, WU L F, et al. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells[J]. Funct Integr Genomics, 2018, 18(1): 1-10. |
[1] | Ying-jie CHENG, Qian-qian SUN, Min ZHAO. Research progress in epigenetics in methamphetamine use and addiction [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1094-1098. |
[2] | Dan WU, Li-ping GE. Research progress of DNA methylation in gestational diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1120-1124. |
[3] | Fen ZHAO, Qiao-qiao JIN, Ke-yong YUAN, Xiu-xiu HOU, Zheng-wei HUANG, Rui MA. Correlation analysis of salivary microbiome and host blood lipid levels [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(4): 442-447. |
[4] | Liang-jun LIN, Wei-di WANG, Pei WANG, Guan-ning LIN, Zhen WANG. Research progress in epigenetics of obsessive-compulsive disorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 267-272. |
[5] | Lin-lin LI, Shao-hua HU, Xiao-qin YIN, Pin LI. Changes of serum unsaturated free fatty acid profiles in girls with idiopathic central precocious puberty and their correlations with body mass index and sex hormones [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1405-1411. |
[6] | Xiu-ying LIU, Rui-fang LAN. Correlation between quantitative electroencephalogram features and CT perfusion imaging parameters in acute ischemic stroke [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 62-65. |
[7] | LIN Mao-wen*, LIU Tian*, TIAN Ke-qing, JIANG Hong, ZENG Min-min, WANG Li, YIN Jun, LEI Ruo-qian, YAO Meng-lei, HUANG Ji-gui. Spatial-temporal distribution of coronavirus disease 2019 in Jingzhou City [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 566-572. |
[8] | ZHU Wei-jun1, MA Jin1, CUI Wen-bin2, YUAN Su-wei1. New grey correlation and degree of structure variation analysis of hospitalization cost of childhood pneumonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 666-670. |
[9] | ZHU Zheng-yang, WANG Cheng, JIANG Chen-yi, ZHAO Fu-jun. Aberrant RNA N6-methyladenosine modification causes tumorigenesis, progression and metastasis of malignant tumorsaffecting cancer stem cells [J]. , 2020, 40(3): 385-. |
[10] | ZHU Yu-qian, WU Ling-yun. Research advances in role of m6A methylation modification in hematological malignancies [J]. , 2020, 40(3): 396-. |
[11] | CUI Yu, RAN Juan-juan, WANG Yi, GU Ping. Study on relationship between serum 25-hydroxyvitamin D level and leukoaraiosis [J]. , 2020, 40(2): 231-. |
[12] | REN Yan-yan, LÜ Qin-yu, YANG Wei-li, WANG Zhen. Correlation between childhood trauma and schizophrenia symptoms [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1641-1645. |
[13] | XIANG Si-ying, LI Ning-ning, XU Yi-feng#, CHEN Jian-hua#. Advances in DNA methylation mechanism of antipsychotic-induced metabolic syndrome [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1656-1659. |
[14] | LI Jian-hui, SU Yang, YAO Yu-feng, NI Jin-jing. Role of methylation in regulating PhoP activity in Salmonella enterica serovar Typhimurium [J]. , 2019, 39(8): 827-. |
[15] | QIN Kai-li1*, LIU An-ming2*, YUAN Chong-gang3, SHI Rong1, YAO Qian1, CAI Chen4, ZHOU Yi-jun1, TIAN Ying1, 5, ZHANG Yan1, GAO Yu1. Exposure status of multiple environmental pollutants during pregnancy: based on biomonitoring data Laizhou Wan Birth Cohort in Shandong [J]. , 2019, 39(4): 421-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||