Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (8): 997-1007.doi: 10.3969/j.issn.1674-8115.2023.08.007
• Basic research • Previous Articles Next Articles
GAO Yu(), YIN Shan, PANG Yue, LIANG Wenyi, LIU Yumin()
Received:
2023-03-16
Accepted:
2023-08-01
Online:
2023-08-28
Published:
2023-08-28
Contact:
LIU Yumin
E-mail:shirlygao@sjtu.edu.cn;ymliu@sjtu.edu.cn
Supported by:
CLC Number:
GAO Yu, YIN Shan, PANG Yue, LIANG Wenyi, LIU Yumin. Effect of rhubarb on gut microbiota-host co-metabolism in rats[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 997-1007.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.08.007
Class | Significant metabolite | Related bacteria [ | Fc | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Serum | Colon | Fecal | |||||||||
Fc1 | Fc2 | Fc3 | Fc1 | Fc2 | Fc3 | Fc1 | Fc2 | Fc3 | |||
Metabolites of gut microbial-proteins, peptides and amino acids/gut microbial-host co-metabolism | Catechol | Lactobacillus[+ -] Clostridium[] | 1.09 | -1.06 | 1.42① | ||||||
Phenylpropionic acid | 1.01 | 1.75① | 1.48① | 5.27① | 8.35① | 5.44① | |||||
2-hydroxyphenylpropionic acid | -2.08① | -2.33① | -2.33① | ||||||||
L-DOPA | 1.10 | -1.44① | -1.30① | ||||||||
Phenylalanine | 1.12 | 1.20① | 1.23① | -1.28 | -1.43① | -1.49① | |||||
Tyrosine | 1.41① | 1.53① | 1.58① | ||||||||
4-aminobutyric acid | Clostridium[] | -1.30 | -1.79① | -1.35 | |||||||
Ornithine | 1.21① | 1.31① | 2.03① | -2.08① | -1.85① | -2.00① | |||||
Spermidine | 1.58① | 2.17① | 2.30① | ||||||||
Tryptophan | Escherichia coli[+ -] Bifidobacterium[+] | 1.07 | 1.41① | 1.46① | |||||||
Indole-3-acetic acid | 1.12 | 2.06① | 1.92① | ||||||||
Indole-3-propionic acid | 1.00 | -1.10 | -2.00① | ||||||||
Indole-3-lactic acid | 1.08 | 1.36① | 1.43① | ||||||||
Kynurenic acid | 1.29① | 1.44① | -7.14① | ||||||||
Xanthuric acid | -1.09 | -1.25① | -1.47① | ||||||||
Nicotinic acid | -1.11 | -1.11 | 2.85① | -1.12 | -1.25① | -1.28① | |||||
Deoxycholic acid | Lactobacillus[+ -] Bifidobacterium[+] Bacteroides[+] Escherichia coli[+ -] Clostridium[] | -1.03 | 1.04 | 2.88① | |||||||
Cholesterol | 1.75① | 1.84① | 2.46① | -1.85 | -4.17① | -3.85① | |||||
Isoleucine | 1.18 | 1.18 | 1.22① | -1.26 | -1.28① | -1.39① | |||||
Leucine | 1.15 | 1.19 | 1.24① | -1.17 | -1.25① | -1.26① | |||||
Valine | 1.21 | 1.19 | 1.26① | -1.21 | -1.58① | -1.67① | |||||
Isovaleric acid | 1.28 | 1.02 | -2.94① | ||||||||
Caproic acid | 1.04 | 4.37① | 4.30① | ||||||||
TCA cycle | Fumaric acid | Bifidobacterium[+] Lactobacillus[+ -] | 2.29① | 2.84① | 3.83① | 1.73① | 1.28 | 1.25① | -1.85① | -1.79① | -1.75① |
Malic acid | 1.60① | 2.28① | 3.49① | 1.71① | -1.06① | 1.00 | -1.64① | -2.17① | -2.04① | ||
α-ketoglutaric acid | 1.33 | 1.34 | 1.60① | ||||||||
Citric acid | 1.48① | 1.41① | 1.74① | ||||||||
Isocitrate | 1.53 | 1.64① | 1.77① | ||||||||
TCA cycle-amino acid | Glutamic acid | 1.27① | 1.31① | 1.43① | -1.23 | -1.61① | -1.72① | ||||
Glutamine | 2.15① | 2.37① | 3.08① | ||||||||
Aspartic acid | 1.31① | 1.46① | 1.60① | ||||||||
Asparagine | 1.17 | 1.59① | 1.40① | ||||||||
TCA cycle-glycometabolism | Pyruvate | Bifidobacterium[+] Bacteroides[+] Lactobacillus[+ -] | 1.09 | 1.37 | 1.67① | -1.03 | 1.47 | 2.48① | |||
Lactic acid | 1.16 | 1.46① | 1.46① | 1.55① | -1.07 | -1.05 | -3.52① | -2.68① | -1.05① | ||
Fructose | 1.08 | 1.23① | 1.41① | 1.46① | 2.20① | 3.41① | |||||
6-phosphogluconic acid | -1.09① | -1.10① | -1.33① | 1.34① | 1.55① | -10.00① | |||||
D-glycero-1-phosphate | 1.45 | 1.95① | 2.03① | -1.35① | -1.37 | -1.69① | |||||
Glucose-1-phosphate | 1.05 | 0.85 | 1.42① | 1.31 | 1.22 | -2.63① | -1.25① | -1.29① | -1.31① | ||
β-glycerophosphate | -1.33① | 1.00 | -1.56① | ||||||||
Ethanolamine phosphate | 1.21 | -1.67 | -1.96① | ||||||||
Phosphoenolpyruvate | 1.54① | 1.32 | -1.56① | ||||||||
TCA cycle-lipid metabolism | Linolenic acid | Bifidobacterium[+] Lactobacillus[+-] | 1.04 | -1.53① | -1.52① | ||||||
Docosanoic acid | 1.32 | 3.29① | 1.92① | ||||||||
13-docosenoic acid | 1.43 | 1.80① | 2.27① | ||||||||
1-monostearoylglycerol | -1.30 | 1.01 | 1.53① |
Tab 1 Significant metabolites in rats of the control group and the rhubarb administration groups
Class | Significant metabolite | Related bacteria [ | Fc | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Serum | Colon | Fecal | |||||||||
Fc1 | Fc2 | Fc3 | Fc1 | Fc2 | Fc3 | Fc1 | Fc2 | Fc3 | |||
Metabolites of gut microbial-proteins, peptides and amino acids/gut microbial-host co-metabolism | Catechol | Lactobacillus[+ -] Clostridium[] | 1.09 | -1.06 | 1.42① | ||||||
Phenylpropionic acid | 1.01 | 1.75① | 1.48① | 5.27① | 8.35① | 5.44① | |||||
2-hydroxyphenylpropionic acid | -2.08① | -2.33① | -2.33① | ||||||||
L-DOPA | 1.10 | -1.44① | -1.30① | ||||||||
Phenylalanine | 1.12 | 1.20① | 1.23① | -1.28 | -1.43① | -1.49① | |||||
Tyrosine | 1.41① | 1.53① | 1.58① | ||||||||
4-aminobutyric acid | Clostridium[] | -1.30 | -1.79① | -1.35 | |||||||
Ornithine | 1.21① | 1.31① | 2.03① | -2.08① | -1.85① | -2.00① | |||||
Spermidine | 1.58① | 2.17① | 2.30① | ||||||||
Tryptophan | Escherichia coli[+ -] Bifidobacterium[+] | 1.07 | 1.41① | 1.46① | |||||||
Indole-3-acetic acid | 1.12 | 2.06① | 1.92① | ||||||||
Indole-3-propionic acid | 1.00 | -1.10 | -2.00① | ||||||||
Indole-3-lactic acid | 1.08 | 1.36① | 1.43① | ||||||||
Kynurenic acid | 1.29① | 1.44① | -7.14① | ||||||||
Xanthuric acid | -1.09 | -1.25① | -1.47① | ||||||||
Nicotinic acid | -1.11 | -1.11 | 2.85① | -1.12 | -1.25① | -1.28① | |||||
Deoxycholic acid | Lactobacillus[+ -] Bifidobacterium[+] Bacteroides[+] Escherichia coli[+ -] Clostridium[] | -1.03 | 1.04 | 2.88① | |||||||
Cholesterol | 1.75① | 1.84① | 2.46① | -1.85 | -4.17① | -3.85① | |||||
Isoleucine | 1.18 | 1.18 | 1.22① | -1.26 | -1.28① | -1.39① | |||||
Leucine | 1.15 | 1.19 | 1.24① | -1.17 | -1.25① | -1.26① | |||||
Valine | 1.21 | 1.19 | 1.26① | -1.21 | -1.58① | -1.67① | |||||
Isovaleric acid | 1.28 | 1.02 | -2.94① | ||||||||
Caproic acid | 1.04 | 4.37① | 4.30① | ||||||||
TCA cycle | Fumaric acid | Bifidobacterium[+] Lactobacillus[+ -] | 2.29① | 2.84① | 3.83① | 1.73① | 1.28 | 1.25① | -1.85① | -1.79① | -1.75① |
Malic acid | 1.60① | 2.28① | 3.49① | 1.71① | -1.06① | 1.00 | -1.64① | -2.17① | -2.04① | ||
α-ketoglutaric acid | 1.33 | 1.34 | 1.60① | ||||||||
Citric acid | 1.48① | 1.41① | 1.74① | ||||||||
Isocitrate | 1.53 | 1.64① | 1.77① | ||||||||
TCA cycle-amino acid | Glutamic acid | 1.27① | 1.31① | 1.43① | -1.23 | -1.61① | -1.72① | ||||
Glutamine | 2.15① | 2.37① | 3.08① | ||||||||
Aspartic acid | 1.31① | 1.46① | 1.60① | ||||||||
Asparagine | 1.17 | 1.59① | 1.40① | ||||||||
TCA cycle-glycometabolism | Pyruvate | Bifidobacterium[+] Bacteroides[+] Lactobacillus[+ -] | 1.09 | 1.37 | 1.67① | -1.03 | 1.47 | 2.48① | |||
Lactic acid | 1.16 | 1.46① | 1.46① | 1.55① | -1.07 | -1.05 | -3.52① | -2.68① | -1.05① | ||
Fructose | 1.08 | 1.23① | 1.41① | 1.46① | 2.20① | 3.41① | |||||
6-phosphogluconic acid | -1.09① | -1.10① | -1.33① | 1.34① | 1.55① | -10.00① | |||||
D-glycero-1-phosphate | 1.45 | 1.95① | 2.03① | -1.35① | -1.37 | -1.69① | |||||
Glucose-1-phosphate | 1.05 | 0.85 | 1.42① | 1.31 | 1.22 | -2.63① | -1.25① | -1.29① | -1.31① | ||
β-glycerophosphate | -1.33① | 1.00 | -1.56① | ||||||||
Ethanolamine phosphate | 1.21 | -1.67 | -1.96① | ||||||||
Phosphoenolpyruvate | 1.54① | 1.32 | -1.56① | ||||||||
TCA cycle-lipid metabolism | Linolenic acid | Bifidobacterium[+] Lactobacillus[+-] | 1.04 | -1.53① | -1.52① | ||||||
Docosanoic acid | 1.32 | 3.29① | 1.92① | ||||||||
13-docosenoic acid | 1.43 | 1.80① | 2.27① | ||||||||
1-monostearoylglycerol | -1.30 | 1.01 | 1.53① |
1 | 国家药典委员会. 中华人民共和国药典:一部(2020年版)[M]. 北京: 中国医药科技出版社, 2020: 24-25. |
National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China: A(2020)[M]. Beijing: China Medical Science and Technology Press, 2020: 24-25. | |
2 | 金丽霞, 金丽军, 栾仲秋, 等. 大黄的化学成分和药理研究进展[J]. 中医药信息, 2020, 37(1): 121-126. |
JIN L X, JIN L J, LUAN Z Q, et al. Research progress on chemical constituents and pharmacology of Rhubarb[J]. Information on Traditional Chinese Medicine, 2020,37(1): 121-126. | |
3 | PENG Y, WU C F, YANG J Y, et al. Gut microbial diversity in rat model induced by rhubarb[J]. Exp Anim, 2014, 63(4): 415-422. |
4 | 王荣荣, 曹志尉, 孟静. 大黄牡丹汤保留灌肠联合血液净化治疗重症急性胰腺炎的临床疗效及对患者肠黏膜屏障功能和炎症因子的影响[J]. 中国中医急症, 2018, 27(9): 1618-1620. |
WANG R R, CAO Z W, MENG J. Clinical effect of Rhubarb Peony Decoction retention enema combined with blood purification in the treatment of severe acute pancreatitis and its effect on intestinal mucosal barrier function and inflammatory factors[J]. Journal of Emergency in Traditional Chinese Medicine, 2018,27(9): 1618-1620. | |
5 | 张开弦, 姚秋阳, 吴发明, 等. 大黄属药用植物化学成分及药理作用研究进展[J]. 中国新药杂志, 2022, 31(6) :555-566. |
ZHANG K X, YAO Q Y, WU F M, et al. Resrarch progress on chemical constituents and pharmacological effects of medicinal plants in genus Rheum[J]. Chinese Journal of New Drugs, 2022, 31(6): 555-566. | |
6 | 张丽恒, 乙引. 大黄素对大肠杆菌的体外抗菌活性及其抗菌机理研究[J]. 黑龙江畜牧兽医, 2021, 622(10): 127-130, 134. |
ZHANG L H, YI Y. Study on the in vitro antibacterial activity of emodin against Escherichia coli and its antibacterial mechanism[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021, 622(10): 127-130, 134. | |
7 | 聂银利, 段学清, 陈瑞, 等. 大黄对大鼠肠道菌群的影响[J]. 实用中医药杂志, 2021, 37(4): 529-535. |
NIE Y L, DUAN X Q, CHEN R, et al. Effect of Rhubarb on the intestinal flora of rat[J]. Journal of Practical Traditional Chinese Medicine, 2021, 37(4): 529-535. | |
8 | 符子艺, 魏成功, 刘小虹, 等. 从大黄对肠道微生态的影响探讨肺肠相关理论[J]. 亚太传统医药, 2014, 10(8): 44-46. |
FU Z Y, WEI C G, LIU X H, et al. To explore lung-intestinal theory from the effect of Rhubarb on intestinal microecology[J]. Asia-Pacific Traditional Medicine, 2014, 10(8): 44-46. | |
9 | 孙元莹, 李志军, 王今达. 从 "肺与大肠相表里" 论治多脏器功能障碍综合征[J]. 时珍国医国药, 2007, 18(5): 1220-1221. |
SUN Y Y, LI Z J, WANG J D. Treatment of multiple organ dysfunction syndrome from the "lung and large intestine"[J]. Lishizhen Medicine and Materia Medica Research, 2007, 18(5): 1220-1221. | |
10 | 韦忠红, 赵杨, 李晓曼, 等. 大黄蒽醌类成分影响肠道微生物的组成平衡损伤结肠黏膜屏障促进结肠癌发展[J]. 中国药理学与毒理学杂志, 2021, 35(10): 750-751. |
WEI Z H, ZHAO Y, LI X M, et al. The anthraquinones of Rhubarb affect the composition balance of intestinal microorganisms, damage the mucosal barrier of colon and promote the development of colon cancer [J].Chinese Journal of Pharmacology and Toxicology, 2021,35(10): 750-751. | |
11 | 乔进, 赵彦, 陈霞, 等. 基于PI3K/Akt/FoxO1通路探讨大黄酸对2型糖尿病大鼠肾损伤的作用[J]. 中成药, 2023, 45(2): 609-613. |
QIAO J, ZHAO Y, CHEN X, et al. Effect of rhein on kidney injury in type 2 diabetic rats based on PI3K/Akt/FoxO1 pathway[J]. Chinese Traditional Patent Medicine, 2023,45(2): 609-613. | |
12 | QIU Y P, CAI G X, SU M M, et al. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS[J]. J Proteome Res, 2009, 8(10): 4844-4850. |
13 | PAN L, QIU Y P, CHEN T L, et al. An optimized procedure for metabonomic analysis of rat liver tissue using gas chromatography/time-of-flight mass spectrometry[J]. J Pharm Biomed Anal, 2010, 52(4): 589-596. |
14 | YIN S, GUO P, HAI D F, et al. Optimization of GC/TOF MS analysis conditions for assessing host-gut microbiota metabolic interactions: Chinese rhubarb alters fecal aromatic amino acids and phenol metabolism[J]. Anal Chim Acta, 2017, 995: 21-33. |
15 | NICHOLSON J K, HOLMES E, KINROSS J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267. |
16 | 宋洋, 乐佳蕴, 王小翠, 等. 大黄调节肠道菌群干预急性胰腺炎的研究进展[J]. 中国中医急症, 2022, 31(8): 1307-1309. |
SONG Y, LE J Y, WANG X C, et al. Research progress of Rhubarb regulating intestinal flora in the intervention of acute pancreatitis[J]. Journal of Emergency in Traditional Chinese Medicine, 2022,31(8): 1307-1309. | |
17 | 张孟之, 陈雨佳, 王宗陵, 等. 基于对肠道菌群调节探讨大黄醒脑开窍机制[J]. 辽宁中医杂志, 2019, 46(6): 1196-1198. |
ZHANG M Z, CHEN Y J, WANG Z L, et al. Study on mechanism of resuscitation of Rhubarb based on regulation of intestinal flora[J]. Liaoning Journal of Traditional Chinese Medicine, 2019,46(6): 1196-1198. | |
18 | 王玉, 杨雪, 夏鹏飞, 等. 大黄化学成分、药理作用研究进展及质量标志物的预测分析[J]. 中草药, 2019, 50(19): 4821-4837. |
WANG Y, YANG X, XIA P F, et al. Research progress on chemical composition and pharmacological effects of Rhei Radix et Rhizoma and predictive analysis on quality markers[J]. Chinese Traditional and Herbal Drugs, 2019, 50(19): 4821-4837. | |
19 | GAO X, PUJOS-GUILLOT E, SÉBÉDIO J L. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis[J]. Anal Chem, 2010, 82(15): 6447-6456. |
20 | RANHOTRA H S, FLANNIGAN K L, BRAVE M, et al. Xenobiotic receptor-mediated regulation of intestinal barrier function and innate immunity[J]. Nucl Receptor Res, 2016, 3: 101199. |
21 | KORECKA A, DONA A, LAHIRI S, et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism[J]. NPJ Biofilms Microbiomes, 2016, 2: 16014. |
22 | 王亦君, 冯舒涵, 程锦堂, 等. 大黄蒽醌类化学成分和药理作用研究进展[J]. 中国实验方剂学杂志, 2018, 24(13): 227-234. |
WANG Y J, FENG S H, CHENG J T, et al. Research progress on chemical constituents and pharmacological action of anthraquinone in Rhei Radix et Rhizoma[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(13): 227-234. | |
23 | VAN DER LEEK A P, YANISHEVSKY Y, KOZYRSKYJ A L. The kynurenine pathway as a novel link between allergy and the gut microbiome[J]. Front Immunol, 2017, 8: 1374. |
24 | 李吉平, 陈雪, 刘建华, 等. 双歧杆菌生物特性及其功能研究进展[J]. 中国奶牛, 2020, 362(6): 57-61. |
LI J P, CHEN X, LIU J H, et al. Advances in biological characteristics and functions of bifidobacterium[J]. China Dairy Cattle, 2020, 362(6): 57-61. | |
25 | 孙蒋, 罗静雯, 姚文杰, 等. 大黄素对急性肾损伤大鼠肠道菌群的调节作用[J]. 中国中药杂志, 2019, 44(4): 758-764. |
SUN J, LUO J W, YAO W J, et al. Effect of emodin on gun microbiota of rats with acute kidney failure[J]. China Journal of Chinese Materia Medica, 2019, 44(4): 758-764. | |
26 | 郑彦懿, 周联,罗霞. 大黄牡丹汤及其主要活性成分对三种肠道细菌的影响[C]. 北京: 第十届全国免疫学学术大会, 2015. |
ZHENG Y Y, ZHOU L, LUO X. Effects of Rhubarb Peony Decoction and its main active components on three intestinal bacteria[C]. Beijing: Tenth National Conference on Immunology, 2015. | |
27 | 皮宇, 高侃, 朱伟云. 动物宿主—肠道微生物代谢轴研究进展[J]. 微生物学报, 2017, 57(2): 161-169. |
PI Y, GAO K, ZHU W Y. Advances in host-microbe metabolic axis[J]. Acta Microbiologica Sinica, 2017, 57(2): 161-169. | |
28 | 司惠丽. 大黄对实热证大鼠能量代谢影响的研究[D]. 济南: 山东中医药大学, . |
SI H L. Study on the influence of Rhubarb on excessive heat syndrome rats model[D]. Jinan: Shandong Traditional Chinese Medicine University, 2012. | |
29 | CHERRINGTON C A, HINTON M, MEAD G C, et al. Organic acids: chemistry, antibacterial activity and practical applications[J]. Adv Microb Physiol, 1991, 32: 87-108. |
30 | 黄慧, 熊雁, 唐艺加, 等. 大黄素对心肌梗死后心力衰竭大鼠心肌保护机制研究[J]. 中国临床解剖学杂志, 2023, 41(1): 64-71. |
HUANG H, XIONG Y, TANG Y J, et al. The protective effects of emodin on myocardial energy metabolism in rats with heart failure after myocardial in farction[J]. Chinese Journal of Clinical Anatomy, 2023,41(1): 64-71. |
[1] | WEN Yajin, HE Wen, HAN Xiao, ZHANG Xiaobo. Exploratory analysis of gut microbiota differences in childhood asthma with different severity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 655-664. |
[2] | WANG Jie, WU Hui, LU Lingpeng, YANG Kefeng, ZHU Jie, ZHOU Hengyi, YAO Die, GAO Ya, FENG Yuting, LIU Yuhong, JIA Jie. Dynamic changes in gut microbiota of women with gestational diabetes mellitus and the correlation with blood glucose, blood lipid and diet [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1336-1346. |
[3] | LU Yu, WANG Hao, BA Qian. Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 939-944. |
[4] | JIANG Yi, JIANG Ping, ZHANG Mingming, FANG Jingyuan. Research progress in the role of Akkermansia muciniphila in gut-related diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1490-1497. |
[5] | Ying-dan ZHANG, Zhen WANG. Research progress of the role of gut microbiota in the pathogenesis and treatment of obsessive-compulsive disorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 967-971. |
[6] | CHU Wei-wei, XU Jie-ying, LI Shang, ZHAI Jun-yu, DU Yan-zhi. Gut microbiota of polycystic ovary syndrome model rats induced with dehydroepiandrosterone [J]. , 2019, 39(9): 975-. |
[7] | DENG Di, ZHAO Min. Research progress of gut microbiota in substance dependence [J]. , 2019, 39(3): 322-. |
[8] | SONG Yue-hong, JIANG Hai-feng, PENG Su-fang, ZHAO Min. Research progress of gut microbiota in depression, anxiety and substance disorders [J]. , 2019, 39(10): 1199-. |
[9] | GU Ting-ting, LAI Dong-mei. Research progress on the correlation between gut microbiota and obstetrics and gynecology diseases [J]. , 2018, 38(8): 967-. |
[10] | WANG Yin-yu1, LIU Ye1, HUANG He-feng1, 2. Roles of gut microbiota in the occurrence and development of polycystic ovary syndrome [J]. , 2018, 38(4): 454-. |
[11] | YOU Yi-jun, HAN Xiao-long, ZHENG Xiao-jiao, ZHAO Ai-hua, CHEN Tian-lu . Research progress of the bidirectional interaction between gut microbiota and brain [J]. , 2017, 37(2): 253-. |
[12] | OUYANG Feng-xiu, WANG Xu. Factors influencing gut microbiota in early life and childhood obesity [J]. , 2016, 36(9): 1378-. |
[13] | ZHU Chao-xia, CANG Zhen, Jiazireya·Zaiyinati, et al. Effects of berberine on gut microbiota of rats with non-alcoholic fatty liver disease induced by high-fat diet [J]. , 2015, 35(4): 483-. |
[14] | ZHU Chao-xia, LU Ying-li. Advances of relationships among gut microbiota, obesity, and metabolic diseases relevant to obesity [J]. , 2014, 34(12): 1829-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||