Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (10): 1323-1329.doi: 10.3969/j.issn.1674-8115.2024.10.015
• Review • Previous Articles
LI Yu1,2(), JIANG Yifan1, TONG Rongliang1, CHEN Diyu1, WU Jian1,2()
Received:
2024-03-14
Accepted:
2024-06-04
Online:
2024-10-28
Published:
2024-10-28
Contact:
WU Jian
E-mail:li_yu@zju.edu.cn;drwujian@zju.edu.cn
Supported by:
CLC Number:
LI Yu, JIANG Yifan, TONG Rongliang, CHEN Diyu, WU Jian. Research progress in the relationship between FOXM1 and neoplasm metabolism[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1323-1329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.10.015
1 | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
2 | 关永俊, 余佳, 王卫星. 转录因子与肿瘤代谢重编程的研究进展[J]. 腹部外科, 2022, 35(2): 136-140. |
GUAN Y J, YU J, WANG W X. Research advances of transcription factors and tumor metabolic reprogramming[J]. Journal of Abdominal Surgery, 2022, 35(2): 136-140. | |
3 | BACH D H, LONG N P, LUU T T, et al. The dominant role of forkhead box proteins in cancer[J]. Int J Mol Sci, 2018, 19(10): E3279. |
4 | LIAO G B, LI X Z, ZENG S, et al. Regulation of the master regulator FOXM1 in cancer[J]. Cell Commun Signal, 2018, 16(1): 57. |
5 | ABDELJAOUED S, BETTAIEB I, NASRI M, et al. Overexpression of FOXM1 is a potential prognostic marker in male breast cancer[J]. Oncol Res Treat, 2017, 40(4): 167-172. |
6 | EGAWA M, YOSHIDA Y, OGURA S, et al. Increased expression of Forkhead box M1 transcription factor is associated with clinicopathological features and confers a poor prognosis in human hepatocellular carcinoma[J]. Hepatol Res, 2017, 47(11): 1196-1205. |
7 | ITO T, KOHASHI K, YAMADA Y, et al. Prognostic significance of forkhead box M1 (FOXM1) expression and antitumor effect of FOXM1 inhibition in angiosarcoma[J]. J Cancer, 2016, 7(7): 823-830. |
8 | KONG F F, QU Z Q, YUAN H H, et al. Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer[J]. Oncol Rep, 2014, 31(6): 2660-2668. |
9 | TASSI R A, TODESCHINI P, SIEGEL E R, et al. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients[J]. J Exp Clin Cancer Res, 2017, 36(1): 63. |
10 | ZHANG H, ZHONG H, LI L, et al. Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer[J]. Mol Med Rep, 2016, 13(3): 2696-2700. |
11 | GARBER K. Energy deregulation: licensing tumors to grow[J]. Science, 2006, 312(5777): 1158-1159. |
12 | CHEN J Q, RUSSO J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells[J]. Biochim Biophys Acta, 2012, 1826(2): 370-384. |
13 | CUI J, SHI M, XIE D, et al. FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression[J]. Clin Cancer Res, 2014, 20(10): 2595-2606. |
14 | JIANG W, ZHOU F, LI N, et al. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression[J]. Int J Clin Exp Pathol, 2015, 8(6): 6756-6763. |
15 | SHANG R, PU M, LI Y, et al. FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression[J]. Oncol Rep, 2017, 37(4): 2261-2269. |
16 | WANG Y, YUN Y, WU B, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription[J]. Oncotarget, 2016, 7(30): 47985-47997. |
17 | KUAI X Y, LEI Z Y, LIU X S, et al. The interaction of GLUT1 and FOXM1 leads to a poor prognosis in colorectal cancer[J]. Anticancer Agents Med Chem, 2020, 20(8): 941-950. |
18 | WANG K, DAI X, YU A, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression[J]. J Exp Clin Cancer Res, 2022, 41(1): 289. |
19 | ZHANG W, ZHANG X, HUANG S, et al. FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis[J]. Mol Oncol, 2021, 15(5): 1466-1485. |
20 | JIANG Z P, HU H, HU W L, et al. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer[J]. Cancer Cell Int, 2021, 21(1): 596. |
21 | CHENG Y, SUN F M, THORNTON K, et al. FOXM1 regulates glycolysis and energy production in multiple myeloma[J]. Oncogene, 2022, 41: 3899-3911. |
22 | HAO Y, LI D, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data[J]. BMC Bioinformatics, 2019, 20(suppl 7): 195. |
23 | EZZEDDINI R, TAGHIKHANI M, SOMI M H, et al. Clinical importance of FASN in relation to HIF-1α and SREBP-1c in gastric adenocarcinoma[J]. Life Sci, 2019, 224: 169-176. |
24 | JIA J, CHE L, CIGLIANO A, et al. Pivotal role of fatty acid synthase in c-MYC driven hepatocarcinogenesis[J]. Int J Mol Sci, 2020, 21(22): E8467. |
25 | ASSAILY W, RUBINGER D A, WHEATON K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress[J]. Mol Cell, 2011, 44(3): 491-501. |
26 | FAJAS L, LANDSBERG R L, HUSS-GARCIA Y, et al. E2Fs regulate adipocyte differentiation[J]. Dev Cell, 2002, 3(1): 39-49. |
27 | DE OLANO N, KOO C Y, MONTEIRO L J, et al. The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment[J]. Mol Cancer Res, 2012, 10(9): 1189-1202. |
28 | GUAITA-ESTERUELAS S, BOSQUET A, SAAVEDRA P, et al. Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins[J]. Mol Carcinog, 2017, 56(1): 208-217. |
29 | ZHANG X, HUANG C, YUAN Y, et al. FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells[J]. Free Radic Biol Med, 2022, 179: 213-228. |
30 | CALDWELL S A, JACKSON S R, SHAHRIARI K S, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1[J]. Oncogene, 2010, 29(19): 2831-2842. |
31 | LYNCH T P, FERRER C M, JACKSON S R, et al. Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis [J]. J Biol Chem, 2012, 287(14): 11070-11081. |
32 | FERRER C M, LU T Y, BACIGALUPA Z A, et al. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway[J]. Oncogene, 2017, 36(4): 559-569. |
33 | PARK H J, CARR J R, WANG Z, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis[J]. EMBO J, 2009, 28(19): 2908-2918. |
34 | HALASI M, PANDIT B, WANG M, et al. Combination of oxidative stress and FOXM1 inhibitors induces apoptosis in cancer cells and inhibits xenograft tumor growth[J]. Am J Pathol, 2013, 183(1): 257-265. |
35 | NEWICK K, CUNNIFF B, PRESTON K, et al. Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells[J]. PLoS One, 2012, 7(6): e39404. |
36 | XIA L M, HUANG W J, WANG B, et al. Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1[J]. J Cell Biochem, 2009, 106(2): 247-256. |
37 | WEI W S, WANG N, DENG M H, et al. LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis[J]. Redox Biol, 2021, 48: 102201. |
38 | YUNG M M, CHAN D W, LIU V W, et al. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade[J]. BMC Cancer, 2013, 13: 327. |
39 | HU C, LIU D, ZHANG Y, et al. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells[J]. Oncogene, 2014, 33(22): 2888-2897. |
40 | ECKERS J C, KALEN A L, SARSOUR E H, et al. Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells[J]. Radiat Res, 2014, 182(4): 420-429. |
41 | PETROVIC V, COSTA R H, LAU L F, et al. Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin[J]. Cancer Biol Ther, 2010, 9(12): 1008-1016. |
42 | DONG G Z, JEONG J H, LEE Y I, et al. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway[J]. Arch Pharmacal Res, 2017, 40(4): 509-517. |
43 | HALASI M, HITCHINSON B, SHAH B N, et al. Honokiol is a FOXM1 antagonist[J]. Cell Death Dis, 2018, 9: 84. |
44 | JIANG L, CAO X C, CAO J G, et al. Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a[J]. Oncol Lett, 2013, 5(5): 1605-1610. |
45 | BI Z, LIU W, DING R, et al. A novel peptide, 9R-P201, strongly inhibits the viability, proliferation and migration of liver cancer HepG2 cells and induces apoptosis by down-regulation of FoxM1 expression[J]. Eur J Pharmacol, 2017, 796: 175-189. |
46 | XIANG Q, TAN G X, JIANG X, et al. Suppression of FOXM1 transcriptional activities via a single-stranded DNA aptamer generated by SELEX[J]. Sci Rep, 2017, 7: 45377. |
47 | PANDIT B, GARTEL A L. FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy[J]. Cell Cycle, 2011, 10(19): 3269-3273. |
48 | HEGDE N S, SANDERS D A, RODRIGUEZ R, et al. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton[J]. Nat Chem, 2011, 3: 725-731. |
49 | GARTEL A L. Thiazole antibiotics siomycin a and thiostrepton inhibit the transcriptional activity of FOXM1[J]. Front Oncol, 2013, 3: 150. |
50 | GORMALLY M V, DEXHEIMER T S, MARSICO G, et al. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition[J]. Nat Commun, 2014, 5: 5165. |
51 | SHUKLA S, MILEWSKI D, PRADHAN A, et al. The FOXM1 inhibitor RCM-1 decreases carcinogenesis and nuclear β-catenin[J]. Mol Cancer Ther, 2019, 18(7): 1217-1229. |
52 | ZIEGLER Y, LAWS M J, SANABRIA GUILLEN V, et al. Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds[J]. NPJ Breast Cancer, 2019, 5: 45. |
53 | TEH M T. FOXM1 wins molecule of the year 2010 [EB/OL]. [2011-02-20]. http://ismcbbpr.synthasite.com/molyearnews/foxm1-wins-molecule-of-the-year-2010. |
[1] | CHEN Huaihuang, ZUO Wu, BIAN Qian. CTCF regulates lipid metabolism and gene expression in mouse AML12 liver cell line [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1069-1082. |
[2] | MA Meili, TENG Jiajun, GAO Zhiqiang, SHI Chunlei, ZHONG Hua, HAN Baohui. Clinical and imaging analyses of primary mediastinal yolk sac tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1155-1161. |
[3] | WU Wangshu, WANG Minzhou, SONG Ahui, ZHAO Bingru, LU Jiayue, HONG Wenkai, GU Leyi, XIE Kewei, LU Renhua. Efficacy and safety of compound amino acid capsules in the treatment of malnutrition and calcium and phosphorus metabolism disorders in maintenance hemodialysis patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 1023-1029. |
[4] | HU Fei, CAI Xiaohan, CHENG Rui, JI Shiyu, MIAO Jiaxin, ZHU Yan, FAN Guangjian. Progress in translational research on immunotherapy for osteosarcoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 814-821. |
[5] | ZHANG Yesheng, YANG Yijing, HUANG Yiwen, SHI Longyu, WANG Manyuan, CHEN Sisi. Research progress in immune cells regulating drug resistance of tumor cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 830-838. |
[6] | HU Chenyang, LU Shaoyong, YANG Xiuyan. Establishment and evaluation of various in vitro screening systems for peptide inhibitors targeting SAE1 and SAE2 interaction [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 567-575. |
[7] | LI Ping, JIANG Huiru, YE Mengyue, WANG Yayu, CHEN Xiaoyu, YUAN Ancai, XU Wenjie, DAI Huimin, CHEN Xi, YAN Xiaoxiang, TU Shengxian, ZHENG Yuanqi, ZHANG Wei, PU Jun. Analysis of epidemiological characteristics of risk factors for cardiovascular diseases and malignant tumors based on the Shanghai community elderly cohort [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 617-625. |
[8] | WANG Mengting, CHEN Yinan, XUANYUAN Xinyang, YUAN Haihua. Construction and experimental validation of mouse PDX model by malignant pleural effusion-derived tumor cells from lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 435-443. |
[9] | LIU Linnan, FENG Li, WANG Long, LIU Jiayin, FAN Zhisong. Research progress in the expression of versican in malignant tumors and its biological roles [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 525-530. |
[10] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
[11] | FANG Xinyue, SHI Lan, XIA Siyi, WANG Jiaxuan, WU Yingli, HE Kejun. Research progress in Menin-MLL interaction and its inhibitors in MLL-rearranged leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1287-1298. |
[12] | WANG Renjie, HUA Hui, ZHU ChaoYu, WEI Li. Advances of GADD45b in hepatic glucose and lipid metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1316-1322. |
[13] | JIANG Quanxin, CHEN Suzhen, LIU Junli. Research progress in ceruloplasmin regulation of lipid metabolism homeostasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 124-130. |
[14] | ZHOU Haixia, ZHANG Jing. Research progress of m6A methylation modification in regulating tumor immunity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 137-144. |
[15] | CHEN Suyuan, Mutailifu Musitaba, LI Dongxue, ZHANG Zhigang. Expression of adhesion G protein-coupled receptor F1 in pancreatic ductal adenocarcinoma and its mechanism of promoting cancer progression [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||