1 |
World Health Organization. Global Tuberculosis Report 2024[EB/OL]. (2024-10-29)[2025-03-14]. https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024.
|
2 |
AHMAD F, RANI A, ALAM A, et al. Macrophage: a cell with many faces and functions in tuberculosis[J]. Front Immunol, 2022, 13: 747799.
|
3 |
FLYNN J L, CHAN J. Immune cell interactions in tuberculosis[J]. Cell, 2022, 185(25): 4682-4702.
|
4 |
宇妥·元丹贡布. 四部医典[M]. 上海: 上海科学技术出版社, 1987.
|
|
YUTHOK Y G. The four medical canons [M]. Shanghai: Shanghai Science and Technology publishers, 1987.
|
5 |
宗玉英, 欧阳嘉慧, 陈超扬, 等. 常用中藏药体外抗结核分枝杆菌的筛选实验[J]. 中国中药杂志, 2008,33(24): 2973-2980.
|
|
ZONG Y Y, OUYANG J H, CHEN C Y, et al. Screening experiments of commonly used Chinese and Tibetan medicines against Mycobacterium tuberculosis in vitro[J]. China Journal of Chinese Materia Medica, 2008,33(24): 2973-2980.
|
6 |
刚永桂. 红景天胶囊辅助治疗初治肺结核的近期疗效观察[J].青海医药杂志, 2009, 39(3): 18-20.
|
|
GANG Y G. Observations on the recent efficacy of Rhodiola rosea capsules in the adjuvant treatment of primary pulmonary tuberculosis[J]. Qinghai Medical Journal, 2009, 39(3): 18-20.
|
7 |
MAGANI S K J, MUPPARTHI S D, GOLLAPALLI B P, et al. Salidroside - can it be a multifunctional drug?[J]. Curr Drug Metab, 2020, 21(7): 512-524.
|
8 |
ZHANG X, HE D, JIA J L, et al. Erythropoietin mediates re-programming of endotoxin-tolerant macrophages through PI3K/AKT signaling and protects mice against secondary infection[J]. Front Immunol, 2022, 13: 938944.
|
9 |
叶莎莎, 曾耀英, 尹乐乐. 红景天苷对小鼠腹腔巨噬细胞体外增殖、凋亡、吞噬、ROS和NO产生的影响[J]. 细胞与分子免疫学杂志, 2011, 27(3): 237-241.
|
|
YE S S, ZENG Y Y, YIN L L. Effects of salidroside on proliferation, apoptosis, phagocytosis, ROS and NO production of murine peritoneal macrophages in vitro[J]. Chinese Journal of Cellular and Molecular Immunology, 2011,27(3): 237-241.
|
10 |
陆宇, 朱慧. 抗结核药治疗药物监测临床应用专家共识[J]. 中国防痨杂志, 2021, 43(9): 867-873.
|
|
LU Y, ZHU H. Expert consensus on the therapeutic drug monitoring of anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 867-873.
|
11 |
ANTHWAL D, GUPTA R K, BHALLA M, et al. Direct detection of rifampin and isoniazid resistance in sputum samples from tuberculosis patients by high-resolution melt curve analysis[J]. J Clin Microbiol, 2017, 55(6): 1755-1766.
|
12 |
RANKINE-WILSON L I, SHAPIRA T, SAO EMANI C, et al. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis[J]. Microbiology (Reading), 2021, 167(4): 001041.
|
13 |
KRISHNAN V, NATH S, NAIR P, et al. Mycobacterium tuberculosis and its clever approaches to escape the deadly macrophage[J]. World J Microbiol Biotechnol, 2023, 39(11): 300.
|
14 |
LIU Z H, CHEN L X, XIONG D F, et al. Salidroside affects the Th17/Treg cell balance in aplastic anemia via the STAT3/HIF-1α/RORγt pathway[J]. Redox Rep, 2023, 28(1): 2225868.
|
15 |
HE S M, FAN H Y, SUN B, et al. Tibetan medicine salidroside improves host anti-mycobacterial response by boosting inflammatory cytokine production in zebrafish[J]. Front Pharmacol, 2022, 13: 936295.
|
16 |
POLADIAN N, ORUJYAN D, NARINYAN W, et al. Role of NF-κB during Mycobacterium tuberculosis infection[J]. Int J Mol Sci, 2023, 24(2): 1772.
|
17 |
MENG L L, LIAO X M, WANG Y Y, et al. Pharmacologic therapies of ARDS: from natural herb to nanomedicine[J]. Front Pharmacol, 2022, 13: 930593.
|
18 |
王慧莲, 展俊平, 苗喜云, 等. 红景天苷通过JAK2/STAT3信号通路调控线粒体影响Raw 264.7细胞炎症[J]. 中药材, 2022,45(2): 432-436.
|
|
WANG H L, ZHAN J P, MIAO X Y, et al. Effect of salidroside on mitochondria in Raw 264.7 inflammation cells byJAK2/STAT3 signaling pathway[J]. Journal of Chinese Medicinal Materials, 2022,45(2): 432-436.
|
19 |
NISA A, KIPPER F C, PANIGRAHY D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection[J]. Am J Physiol Cell Physiol, 2022, 323(5): C1444-C1474.
|
20 |
AI Y W, MENG Y T, YAN B, et al. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death[J]. Mol Cell, 2024, 84(1): 170-179.
|