Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (12): 1477-1489.doi: 10.3969/j.issn.1674-8115.2024.12.001
• Innovative research team achievement column •
ZHANG Yutong(), HOU Guojun, SHEN Nan()
Received:
2024-04-02
Accepted:
2024-05-16
Online:
2024-12-28
Published:
2024-12-28
Contact:
SHEN Nan
E-mail:zhangyutong135@126.com;nanshensibs@gmail.com
Supported by:
CLC Number:
ZHANG Yutong, HOU Guojun, SHEN Nan. Comparison of human-induced pluripotent stem cell-derived macrophages with peripheral blood-derived macrophages using single-cell genomics[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1477-1489.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.12.001
Gene | Forward primer (5´→3´) | Reverse primer (5´→3´) |
---|---|---|
HLA-DRA | AGCTGTGGACAAAGCCAACCTG | CTCTCAGTTCCACAGGGCTGTT |
CD68 | CGAGCATCATTCTTTCACCAGCT | ATGAGAGGCAGCAAGATGGACC |
CD86 | CCATCAGCTTGTCTGTTTCATTCC | GCTGTAATCCAAGGAATGTGGTC |
MRC1 | AGCCAACACCAGCTCCTCAAGA | CAAAACGCTCGCGCATTGTCCA |
RPL13A | CTCAAGGTGTTTGACGGCATCC | TACTTCCAGCCAACCTCGTGAG |
Tab 1 Primer sequences for RT-qPCR.
Gene | Forward primer (5´→3´) | Reverse primer (5´→3´) |
---|---|---|
HLA-DRA | AGCTGTGGACAAAGCCAACCTG | CTCTCAGTTCCACAGGGCTGTT |
CD68 | CGAGCATCATTCTTTCACCAGCT | ATGAGAGGCAGCAAGATGGACC |
CD86 | CCATCAGCTTGTCTGTTTCATTCC | GCTGTAATCCAAGGAATGTGGTC |
MRC1 | AGCCAACACCAGCTCCTCAAGA | CAAAACGCTCGCGCATTGTCCA |
RPL13A | CTCAAGGTGTTTGACGGCATCC | TACTTCCAGCCAACCTCGTGAG |
Cell type | Marker gene | IPSDM/n(%) | PBDM/n(%) |
---|---|---|---|
Total | ‒ | 9 745 | 1 796 |
Macrophage | CD14, CD68, S100A11, and CD163 | 9 467 (97.15) | 1 794 (99.89) |
HPC-like cell | HES1, SOX4, CDK6, RUNX1T1, and MECOM | 264 (2.71) | 2 (0.11) |
Dendritic cell | ITGAM and ITGAX | 14 (0.14) | 0 (0) |
Tab 2 Cell types, the corresponding marker genes and cell numbers in IPSDM and PBDM
Cell type | Marker gene | IPSDM/n(%) | PBDM/n(%) |
---|---|---|---|
Total | ‒ | 9 745 | 1 796 |
Macrophage | CD14, CD68, S100A11, and CD163 | 9 467 (97.15) | 1 794 (99.89) |
HPC-like cell | HES1, SOX4, CDK6, RUNX1T1, and MECOM | 264 (2.71) | 2 (0.11) |
Dendritic cell | ITGAM and ITGAX | 14 (0.14) | 0 (0) |
Gene | Average log2FC | pct.1 | pct.2 | P value | Adjusted P value |
---|---|---|---|---|---|
MAP4K3-DT | 10.399 | 0.497 | 0 | 8.45×10-305 | 1.66×10-301 |
PNRC2 | 10.246 | 0.498 | 0 | 2.28×10-305 | 4.50×10-302 |
TENT2 | 10.154 | 0.488 | 0 | 8.07×10-297 | 1.59×10-293 |
SELENON | 9.884 | 0.402 | 0 | 2.94×10-226 | 5.79×10-223 |
RAB7B | 9.847 | 0.341 | 0 | 2.27×10-181 | 4.47×10-178 |
FAAP20 | 9.780 | 0.396 | 0 | 2.85×10-221 | 5.61×10-218 |
RAB29 | 9.757 | 0.405 | 0 | 1.58×10-228 | 3.11×10-225 |
UTP11 | 9.677 | 0.370 | 0 | 6.19×10-202 | 1.22×10-198 |
TMEM35B | 9.662 | 0.377 | 0 | 2.08×10-207 | 4.11×10-204 |
ELOA | 9.568 | 0.376 | 0 | 7.27×10-207 | 1.43×10-203 |
EMILIN1 | -3.939 | 0.049 | 0.278 | 7.48×10-244 | 1.47×10-240 |
CCR5 | -2.685 | 0.147 | 0.319 | 3.16×10-102 | 6.22×10-99 |
PHLDA3 | -2.645 | 0.160 | 0.430 | 7.26×10-208 | 1.43×10-204 |
PCM1 | -2.429 | 0.578 | 0.719 | 5.15×10-262 | 1.02×10-258 |
VAMP3 | -2.383 | 0.424 | 0.679 | 7.93×10-295 | 1.56×10-291 |
RRM2 | -2.362 | 0.086 | 0.307 | 9.29×10-164 | 1.83×10-160 |
AGO1 | -2.284 | 0.279 | 0.432 | 7.54×10-97 | 1.49×10-93 |
ITPKB | -2.238 | 0.166 | 0.279 | 1.49×10-51 | 2.94×10-48 |
SMC4 | -2.161 | 0.235 | 0.337 | 6.41×10-46 | 1.26×10-42 |
MAPK14 | -2.077 | 0.372 | 0.499 | 1.82×10-102 | 3.58×10-99 |
Tab 3 Top 10 DEGs with up- and down-regulated fold changes between the macrophages from PBDM and IPSDM
Gene | Average log2FC | pct.1 | pct.2 | P value | Adjusted P value |
---|---|---|---|---|---|
MAP4K3-DT | 10.399 | 0.497 | 0 | 8.45×10-305 | 1.66×10-301 |
PNRC2 | 10.246 | 0.498 | 0 | 2.28×10-305 | 4.50×10-302 |
TENT2 | 10.154 | 0.488 | 0 | 8.07×10-297 | 1.59×10-293 |
SELENON | 9.884 | 0.402 | 0 | 2.94×10-226 | 5.79×10-223 |
RAB7B | 9.847 | 0.341 | 0 | 2.27×10-181 | 4.47×10-178 |
FAAP20 | 9.780 | 0.396 | 0 | 2.85×10-221 | 5.61×10-218 |
RAB29 | 9.757 | 0.405 | 0 | 1.58×10-228 | 3.11×10-225 |
UTP11 | 9.677 | 0.370 | 0 | 6.19×10-202 | 1.22×10-198 |
TMEM35B | 9.662 | 0.377 | 0 | 2.08×10-207 | 4.11×10-204 |
ELOA | 9.568 | 0.376 | 0 | 7.27×10-207 | 1.43×10-203 |
EMILIN1 | -3.939 | 0.049 | 0.278 | 7.48×10-244 | 1.47×10-240 |
CCR5 | -2.685 | 0.147 | 0.319 | 3.16×10-102 | 6.22×10-99 |
PHLDA3 | -2.645 | 0.160 | 0.430 | 7.26×10-208 | 1.43×10-204 |
PCM1 | -2.429 | 0.578 | 0.719 | 5.15×10-262 | 1.02×10-258 |
VAMP3 | -2.383 | 0.424 | 0.679 | 7.93×10-295 | 1.56×10-291 |
RRM2 | -2.362 | 0.086 | 0.307 | 9.29×10-164 | 1.83×10-160 |
AGO1 | -2.284 | 0.279 | 0.432 | 7.54×10-97 | 1.49×10-93 |
ITPKB | -2.238 | 0.166 | 0.279 | 1.49×10-51 | 2.94×10-48 |
SMC4 | -2.161 | 0.235 | 0.337 | 6.41×10-46 | 1.26×10-42 |
MAPK14 | -2.077 | 0.372 | 0.499 | 1.82×10-102 | 3.58×10-99 |
1 | MURRAY P J, WYNN T A. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011, 11(11): 723-737. |
2 | SHI C, PAMER E G. Monocyte recruitment during infection and inflammation[J]. Nat Rev Immunol, 2011, 11(11): 762-774. |
3 | MARCUS R. What is multiple sclerosis?[J]. JAMA, 2022, 328(20): 2078. |
4 | STRAUSS-AYALI D, CONRAD S M, MOSSER D M. Monocyte subpopulations and their differentiation patterns during infection[J]. J Leukoc Biol, 2007, 82(2): 244-252. |
5 | ZHANG F, WEI K, SLOWIKOWSKI K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry[J]. Nat Immunol, 2019, 20(7): 928-942. |
6 | MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820. |
7 | TIAN L, LEI A H, TAN T Y, et al. Macrophage-based combination therapies as a new strategy for cancer immunotherapy[J]. Kidney Dis, 2022, 8(1): 26-43. |
8 | TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. |
9 | TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. |
10 | SELVARAJ V, PLANE J M, WILLIAMS A J, et al. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies[J]. Trends Biotechnol, 2010, 28(4): 214-223. |
11 | PIAU O, BRUNET-MANQUAT M, L'HOMME B, et al. Generation of transgene-free hematopoietic stem cells from human induced pluripotent stem cells[J]. Cell Stem Cell, 2023, 30(12): 1610-1623.e7. |
12 | PAES B C M F, MOÇO P D, PEREIRA C G, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation[J]. Cell Biol Toxicol, 2017, 33(3): 233-250. |
13 | GRSKOVIC M, JAVAHERIAN A, STRULOVICI B, et al. Induced pluripotent stem cells: opportunities for disease modelling and drug discovery[J]. Nat Rev Drug Discov, 2011, 10(12): 915-929. |
14 | VAN WILGENBURG B, BROWNE C, VOWLES J, et al. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions[J]. PLoS One, 2013, 8(8): e71098. |
15 | MUKHERJEE C, HALE C, MUKHOPADHYAY S. A simple multistep protocol for differentiating human induced pluripotent stem cells into functional macrophages[J]. Methods Mol Biol, 2018, 1784: 13-28. |
16 | ALASOO K, MARTINEZ F O, HALE C, et al. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription[J]. Sci Rep, 2015, 5: 12524. |
17 | ALSINET C, PRIMO M N, LORENZI V, et al. Robust temporal map of human in vitro myelopoiesis using single-cell genomics[J]. Nat Commun, 2022, 13(1): 2885. |
18 | QUAN F, LIANG X, CHENG M J, et al. Annotation of cell types (ACT): a convenient web server for cell type annotation[J]. Genome Med, 2023, 15(1): 91. |
19 | ZHANG L, LI Z Y, SKRZYPCZYNSKA K M, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2): 442-459.e29. |
20 | BIAN Z L, GONG Y D, HUANG T, et al. Deciphering human macrophage development at single-cell resolution[J]. Nature, 2020, 582(7813): 571-576. |
21 | DAVIES L C, JENKINS S J, ALLEN J E, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14(10): 986-995. |
22 | MALLAPATY S. Revealed: two men in China were first to receive pioneering stem-cell treatment for heart disease[J]. Nature, 2020, 581(7808): 249-250. |
23 | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1): 168. |
[1] | ZHANG Yesheng, YANG Yijing, HUANG Yiwen, SHI Longyu, WANG Manyuan, CHEN Sisi. Research progress in immune cells regulating drug resistance of tumor cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 830-838. |
[2] | NIU Yuanyuan, WANG Longde, XU Wenjuan, LI Zhengju, ZHANG Ruiting, WU Yuqian. Research progress in the role of M1/M2 polarization of macrophages in different liver diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 509-517. |
[3] | KONG Ruxin, ZHOU Yaqun, WEI Tingyi, LEI Ming. Function and mechanism of cancer-testis antigen CT63 in chronic myeloid leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1347-1358. |
[4] | SONG Wenting, TAO Yue, PAN Yi, MO Xi, CAO Qing. SIRT2 regulates macrophage chemotaxis by de-modifying histone H4K8 lactylation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1008-1016. |
[5] | HOU Zongliang, YANG Qin, LI Shaobai, LEI Ming. Gene expression program analysis of cancer-testis genes [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 945-954. |
[6] | WU Qiqi, WANG Hao, LIN Li, YAN Bo, ZHANG Shulin. miR-185-5p facilitates intracellular Mycobacterium growth via inhibiting macrophage autophagy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 699-708. |
[7] | WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 624-630. |
[8] | LI Xuran, TAO Shicong, GUO Shangchun. Ameliorative effects on osteoporosis of small extracellular vesicles derived from bone marrow mesenchymal stem cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 406-416. |
[9] | ZHU Yiwen, YU Qing, WU Xinrui, LU Jie, CHEN Zihao, GINHOUX Florent, SU Bing, LIU Zhaoyuan. Renewal of esophageal and gastric macrophages by circulating monocytes [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1208-1215. |
[10] | QI Yangyang, XIONG Ying. Phenotype, function and clinical significance of galectin-9 positive tumor-associated macrophages in muscle-invasive bladder cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1666-1676. |
[11] | Yan-na ZHAO, Rong QIU, Nan SHEN, Yuan-jia TANG. Construction of inducible CRISPR/Cas9 system for studying gene function in mouse [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 297-301. |
[12] | Wei-dong XIA, Guang-yi CHEN, Wen-tong DAI, Sheng ZHAO, Su LI, Cai LIN. Clinical effect of recombinant human granulocyte-macrophage colony stimulating factor gel on donor site after medium to thickness skin transplantation in patients with diabetes [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1498-1501. |
[13] | LU Shi-yuan1, HONG Jie1, CHEN Ying-xuan1, CHEN Jin-xian2, ZHONG Ming2, FANG Jing-yuan1. Study of Fusobacterium nucleatum-related bacterial biofilm promoting M2 polarization of macrophages and chemoresistance in colon cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1018-1029. |
[14] | YANG Shi-qi*, LI Meng-yao*, LIU Si-ming, LIU Zhi-duo. Definition of macrophage subtypes based on the expression of CD169 in murine splenic red pulp macrophages [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(6): 752-760. |
[15] | ZHAO Yan-na1, QIU Rong2, SHEN Nan1, TANG Yuan-jia1. Construction of retroviral small guide RNA expression vector for studying gene function of mouse T cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1585-1590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||