Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (4): 459-467.doi: 10.3969/j.issn.1674-8115.2025.04.008
• Clinical research • Previous Articles Next Articles
CHEN Rong, ZHANG Meng, ZHU Diqi, GUO Ying, SHEN Jie()
Received:
2024-08-05
Accepted:
2024-12-18
Online:
2025-04-28
Published:
2025-04-21
Contact:
SHEN Jie
E-mail:she6t@163.com;she6nt@163.com
CLC Number:
CHEN Rong, ZHANG Meng, ZHU Diqi, GUO Ying, SHEN Jie. Nomogram for predicting the risk of coronary artery lesions in patients with Kawasaki disease based on anti-neutrophil cytoplasmic antibodies[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 459-467.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.04.008
Variable | Training set (n=237) | Validation set (n=103) | P value① | |||||
---|---|---|---|---|---|---|---|---|
CAL (n=58) | NCAL (n=179) | P value | CAL (n=19) | NCAL (n=84) | P value | |||
Gender/n(%) | <0.001 | 0.682 | 0.897 | |||||
Male | 45 (77.59) | 85 (47.49) | 12 (63.16) | 46 (54.76) | ||||
Female | 13 (22.41) | 94 (52.51) | 7 (36.84) | 38 (45.24) | ||||
Age/month | 30.00 (12.25,47.50) | 33.00 (18.00,56.50) | 0.148 | 29.00 (15.00,49.50) | 31.00 (18.75,52.50) | 0.702 | 0.781 | |
Fever duration before IVIG/n(%) | 0.228 | 0.316 | 0.941 | |||||
<5 d | 13 (22.41) | 26 (14.53) | 5 (26.32) | 13 (15.48) | ||||
≥5 d | 45 (77.59) | 153 (85.47) | 14 (73.68) | 71 (84.52) | ||||
CRP/(mg·L-1) | 64.80 (37.95,103.03) | 63.40 (34.90,95.10) | 0.601 | 81.70 (51.60,109.70) | 61.60 (39.78,101.92) | 0.161 | 0.420 | |
NEUT%/% | 66.26 (55.21,76.89) | 65.70 (53.70,76.78) | 0.895 | 68.21 (55.82,80.45) | 67.32 (52.11,74.67) | 0.280 | 0.933 | |
HGB/(g·L-1) | 107.00 (101.00,115.00) | 110.00 (103.00,117.00) | 0.209 | 107.00 (101.00,112.50) | 110.50 (102.75,116.00) | 0.139 | 0.462 | |
PLT/(×109·L-1) | 332.00 (227.50,452.50) | 336.00 (259.00,416.00) | 0.702 | 253.00 (219.50,338.00) | 329.50 (262.75,417.00) | 0.038 | 0.170 | |
Na+/(mmol·L-1) | 135.60 (134.00,137.25) | 137.00 (135.00,138.65) | 0.010 | 136.00 (133.80,137.55) | 136.55 (135.00,138.15) | 0.190 | 0.922 | |
ESR/(mm·h-1) | 65.50 (44.75,75.00) | 65.00 (48.00,81.00) | 0.531 | 66.00 (54.50,74.00) | 71.00 (54.50,87.00) | 0.655 | 0.120 | |
Ferr/(ng·mL-1) | 171.25 (110.67,270.36) | 175.52 (130.20,241.20) | 0.712 | 252.60 (152.65,291.90) | 167.55 (136.88,272.72) | 0.241 | 0.177 | |
ALT/(IU·L-1) | 27.50 (18.00,48.75) | 24.00 (15.50,59.50) | 0.356 | 30.00 (20.00,134.50) | 28.00 (18.75,60.00) | 0.540 | 0.215 | |
AST/(IU·L-1) | 33.00 (27.00,47.75) | 33.00 (28.00,46.50) | 0.731 | 33.00 (28.00,70.00) | 34.00 (26.00,42.50) | 0.507 | 0.579 | |
ALB/(g·L-1) | 34.62±4.36 | 3 6.66±3.98 | 0.002 | 35.22±2.87 | 36.04±4.59 | 0.326 | 0.586 | |
TBIL/(μmol·L-1) | 8.80 (6.12,12.15) | 8.20 (5.60,11.45) | 0.352 | 9.10 (4.85,24.05) | 8.75 (6.65,11.72) | 0.953 | 0.264 | |
NT-proBNP/(pg·mL-1) | 652.00 (185.50,2460.25) | 302.00 (104.00,984.00) | 0.014 | 291.00 (94.50,1528.50) | 406.00 (186.50,1189.75) | 0.792 | 0.691 | |
IL-6/(pg·mL-1) | 74.51 (25.09,246.56) | 71.00 (33.11,169.65) | 0.402 | 74.39 (35.95,150.71) | 80.64 (24.84,167.78) | 0.875 | 0.905 | |
Count of CD3+CD4+/n | 1 173.84 (694.43,1 779.17) | 1 183.81 (635.24,2 016.62) | 0.857 | 862.66 (396.05,1 269.99) | 1 110.01 (670.87,2 006.53) | 0.208 | 0.724 | |
ANA/n(%) | 0.934 | 0.547 | 1.000 | |||||
Positive | 12 (20.69) | 40 (22.35) | 5 (26.32) | 17 (20.24) | ||||
Negative | 46 (79.31) | 139 (77.65) | 14 (73.68) | 67 (79.76) | ||||
ANCA/n(%) | 0.007 | 0.002 | 0.946 | |||||
Positive | 8 (13.79) | 6 (3.35) | 5 (36.32) | 2 (2.38) | ||||
Negative | 50 (86.21) | 173 (96.65) | 14 (73.68) | 82 (97.62) | ||||
IVIG resistance/n(%) | 0.008 | 0.031 | 0.846 | |||||
Yes | 14 (24.14) | 17 (9.50) | 6 (31.58) | 9 (10.71) | ||||
No | 44 (75.86) | 162 (90.50) | 13 (68.42) | 75 (89.29) |
Tab1 Comparison of baseline characteristics between the training set and validation set
Variable | Training set (n=237) | Validation set (n=103) | P value① | |||||
---|---|---|---|---|---|---|---|---|
CAL (n=58) | NCAL (n=179) | P value | CAL (n=19) | NCAL (n=84) | P value | |||
Gender/n(%) | <0.001 | 0.682 | 0.897 | |||||
Male | 45 (77.59) | 85 (47.49) | 12 (63.16) | 46 (54.76) | ||||
Female | 13 (22.41) | 94 (52.51) | 7 (36.84) | 38 (45.24) | ||||
Age/month | 30.00 (12.25,47.50) | 33.00 (18.00,56.50) | 0.148 | 29.00 (15.00,49.50) | 31.00 (18.75,52.50) | 0.702 | 0.781 | |
Fever duration before IVIG/n(%) | 0.228 | 0.316 | 0.941 | |||||
<5 d | 13 (22.41) | 26 (14.53) | 5 (26.32) | 13 (15.48) | ||||
≥5 d | 45 (77.59) | 153 (85.47) | 14 (73.68) | 71 (84.52) | ||||
CRP/(mg·L-1) | 64.80 (37.95,103.03) | 63.40 (34.90,95.10) | 0.601 | 81.70 (51.60,109.70) | 61.60 (39.78,101.92) | 0.161 | 0.420 | |
NEUT%/% | 66.26 (55.21,76.89) | 65.70 (53.70,76.78) | 0.895 | 68.21 (55.82,80.45) | 67.32 (52.11,74.67) | 0.280 | 0.933 | |
HGB/(g·L-1) | 107.00 (101.00,115.00) | 110.00 (103.00,117.00) | 0.209 | 107.00 (101.00,112.50) | 110.50 (102.75,116.00) | 0.139 | 0.462 | |
PLT/(×109·L-1) | 332.00 (227.50,452.50) | 336.00 (259.00,416.00) | 0.702 | 253.00 (219.50,338.00) | 329.50 (262.75,417.00) | 0.038 | 0.170 | |
Na+/(mmol·L-1) | 135.60 (134.00,137.25) | 137.00 (135.00,138.65) | 0.010 | 136.00 (133.80,137.55) | 136.55 (135.00,138.15) | 0.190 | 0.922 | |
ESR/(mm·h-1) | 65.50 (44.75,75.00) | 65.00 (48.00,81.00) | 0.531 | 66.00 (54.50,74.00) | 71.00 (54.50,87.00) | 0.655 | 0.120 | |
Ferr/(ng·mL-1) | 171.25 (110.67,270.36) | 175.52 (130.20,241.20) | 0.712 | 252.60 (152.65,291.90) | 167.55 (136.88,272.72) | 0.241 | 0.177 | |
ALT/(IU·L-1) | 27.50 (18.00,48.75) | 24.00 (15.50,59.50) | 0.356 | 30.00 (20.00,134.50) | 28.00 (18.75,60.00) | 0.540 | 0.215 | |
AST/(IU·L-1) | 33.00 (27.00,47.75) | 33.00 (28.00,46.50) | 0.731 | 33.00 (28.00,70.00) | 34.00 (26.00,42.50) | 0.507 | 0.579 | |
ALB/(g·L-1) | 34.62±4.36 | 3 6.66±3.98 | 0.002 | 35.22±2.87 | 36.04±4.59 | 0.326 | 0.586 | |
TBIL/(μmol·L-1) | 8.80 (6.12,12.15) | 8.20 (5.60,11.45) | 0.352 | 9.10 (4.85,24.05) | 8.75 (6.65,11.72) | 0.953 | 0.264 | |
NT-proBNP/(pg·mL-1) | 652.00 (185.50,2460.25) | 302.00 (104.00,984.00) | 0.014 | 291.00 (94.50,1528.50) | 406.00 (186.50,1189.75) | 0.792 | 0.691 | |
IL-6/(pg·mL-1) | 74.51 (25.09,246.56) | 71.00 (33.11,169.65) | 0.402 | 74.39 (35.95,150.71) | 80.64 (24.84,167.78) | 0.875 | 0.905 | |
Count of CD3+CD4+/n | 1 173.84 (694.43,1 779.17) | 1 183.81 (635.24,2 016.62) | 0.857 | 862.66 (396.05,1 269.99) | 1 110.01 (670.87,2 006.53) | 0.208 | 0.724 | |
ANA/n(%) | 0.934 | 0.547 | 1.000 | |||||
Positive | 12 (20.69) | 40 (22.35) | 5 (26.32) | 17 (20.24) | ||||
Negative | 46 (79.31) | 139 (77.65) | 14 (73.68) | 67 (79.76) | ||||
ANCA/n(%) | 0.007 | 0.002 | 0.946 | |||||
Positive | 8 (13.79) | 6 (3.35) | 5 (36.32) | 2 (2.38) | ||||
Negative | 50 (86.21) | 173 (96.65) | 14 (73.68) | 82 (97.62) | ||||
IVIG resistance/n(%) | 0.008 | 0.031 | 0.846 | |||||
Yes | 14 (24.14) | 17 (9.50) | 6 (31.58) | 9 (10.71) | ||||
No | 44 (75.86) | 162 (90.50) | 13 (68.42) | 75 (89.29) |
Variable | B | SE | P value | OR | 95%CI |
---|---|---|---|---|---|
Male | -1.259 | 0.362 | 0.001 | 0.283 | 0.135‒0.564 |
ALB | -0.115 | 0.041 | 0.005 | 0.891 | 0.820‒0.964 |
ANCA | 1.292 | 0.620 | 0.037 | 3.639 | 1.078‒12.740 |
IVIG resistance | 0.653 | 0.437 | 0.135 | 1.922 | 0.800‒4.496 |
Tab 2 Logistic regression analysis of factors associated with CALs in patients with KD in the training set
Variable | B | SE | P value | OR | 95%CI |
---|---|---|---|---|---|
Male | -1.259 | 0.362 | 0.001 | 0.283 | 0.135‒0.564 |
ALB | -0.115 | 0.041 | 0.005 | 0.891 | 0.820‒0.964 |
ANCA | 1.292 | 0.620 | 0.037 | 3.639 | 1.078‒12.740 |
IVIG resistance | 0.653 | 0.437 | 0.135 | 1.922 | 0.800‒4.496 |
Variable | B | SE | P value | OR | 95%CI | Score |
---|---|---|---|---|---|---|
Male | -0.972 | 0.299 | 0.001 | 0.378 | 0.206‒0.670 | 5 |
ALB<35 g·L-1 | 0.687 | 0.279 | 0.014 | 1.986 | 1.149‒3.441 | 3 |
ANCA positivity | 1.550 | 0.507 | 0.002 | 4.711 | 1.758‒13.140 | 8 |
IVIG resistance | 0.792 | 0.365 | 0.030 | 2.208 | 1.064‒4.481 | 4 |
Tab 3 Logistic regression analysis of factors associated with CALs in patients with KD
Variable | B | SE | P value | OR | 95%CI | Score |
---|---|---|---|---|---|---|
Male | -0.972 | 0.299 | 0.001 | 0.378 | 0.206‒0.670 | 5 |
ALB<35 g·L-1 | 0.687 | 0.279 | 0.014 | 1.986 | 1.149‒3.441 | 3 |
ANCA positivity | 1.550 | 0.507 | 0.002 | 4.711 | 1.758‒13.140 | 8 |
IVIG resistance | 0.792 | 0.365 | 0.030 | 2.208 | 1.064‒4.481 | 4 |
Scoring model | AUC | 95%CI | Sensitivity | Specificity | PPV | NPV | Youden index |
---|---|---|---|---|---|---|---|
New score | 0.716 | 0.665‒0.764 | 0.584 | 0.787 | 44.6 | 86.6 | 0.372 |
Kobayashi score | 0.549 | 0.494‒0.602 | 0.260 | 0.840 | 32.3 | 79.5 | 0.100 |
Egami score | 0.556 | 0.502‒0.610 | 0.455 | 0.658 | 28.0 | 80.5 | 0.113 |
Sano score | 0.537 | 0.483‒0.591 | 0.546 | 0.510 | 24.6 | 79.3 | 0.055 |
Tab 4 Comparison of the predictive performance of 4 scoring systems for KD combined with CALs
Scoring model | AUC | 95%CI | Sensitivity | Specificity | PPV | NPV | Youden index |
---|---|---|---|---|---|---|---|
New score | 0.716 | 0.665‒0.764 | 0.584 | 0.787 | 44.6 | 86.6 | 0.372 |
Kobayashi score | 0.549 | 0.494‒0.602 | 0.260 | 0.840 | 32.3 | 79.5 | 0.100 |
Egami score | 0.556 | 0.502‒0.610 | 0.455 | 0.658 | 28.0 | 80.5 | 0.113 |
Sano score | 0.537 | 0.483‒0.591 | 0.546 | 0.510 | 24.6 | 79.3 | 0.055 |
1 | 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会风湿学组,中华医学会儿科学分会免疫学组,等. 川崎病诊断和急性期治疗专家共识[J]. 中华儿科杂志,2022, 60(1): 6-13. |
The Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medical Association; the Subspecialty Group of Rheumatology, the Society of Pediatrics, Chinese Medical Association; the Subspecialty Group of Immunology, the Society of Pediatrics, Chinese Medical Association, et al. The expert consensus on diagnosis and acute-phase treatment of Kawasaki disease[J]. Chinese Journal of Pediatrics, 2022, 60(1): 6-13. | |
2 | de GRAEFF N, GROOT N, OZEN S, et al. European consensus-based recommendations for the diagnosis and treatment of Kawasaki disease: the SHARE initiative[J]. Rheumatology (Oxford), 2019, 58(4): 672-682. |
3 | JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2013), digest version[J]. Circ J, 2014, 78(10): 2521-2562. |
4 | Newburger J W, Takahashi M, Burns J C. Kawasaki disease[J]. J Am Coll Cardiol, 2016, 67(14): 1738-1749. |
5 | MCCRINDLE B W, ROWLEY A H, NEWBURGER J W, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association[J]. Circulation, 2017, 135(17): e927-e999. |
6 | BROGAN P, BURNS J C, CORNISH J, et al. Lifetime cardiovascular management of patients with previous Kawasaki disease[J]. Heart, 2020, 106(6): 411-420. |
7 | SCHULTE-PELKUM J, RADICE A, NORMAN G L, et al. Novel clinical and diagnostic aspects of antineutrophil cytoplasmic antibodies[J]. J Immunol Res, 2014, 2014: 185416. |
8 | 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会免疫学组. 川崎病冠状动脉病变的临床处理建议[J]. 中华儿科杂志, 2012, 50(10): 746-749. |
The Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medical Association; the Subspecialty Group of Rheumatology, the Society of Pediatrics, Chinese Medical Association. Recommendations for clinical management of Kawasaki disease with coronary arterial lesions[J]. Chinese Journal of Pediatrics, 2012, 50(10): 746-749. | |
9 | KOBAYASHI T, INOUE Y, TAKEUCHI K, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease[J]. Circulation, 2006, 113(22): 2606-2612. |
10 | EGAMI K, MUTA H, ISHII M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease[J]. J Pediatr, 2006, 149(2): 237-240. |
11 | SANO T, KUROTOBI S, MATSUZAKI K, et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment[J]. Eur J Pediatr, 2007, 166(2): 131-137. |
12 | PILANIA R K, BHATTARAI D, SINGH S. Controversies in diagnosis and management of Kawasaki disease[J]. World J Clin Pediatr, 2018, 7(1): 27-35. |
13 | TIAN J, LV H T, AN X J, et al. Endothelial microparticles induce vascular endothelial cell injury in children with Kawasaki disease[J]. Eur Rev Med Pharmacol Sci, 2016, 20(9): 1814-1818. |
14 | LINDQUIST M E, HICAR M D. B cells and antibodies in Kawasaki disease[J]. Int J Mol Sci, 2019, 20(8): E1834. |
15 | TAKAHASHI K, OHARASEKI T, YOKOUCHI Y. Pathogenesis of Kawasaki disease[J]. Clin Exp Immunol, 2011, 164(Supplement 1): 20-22. |
16 | del PRINCIPE D, PIETRAFORTE D, GAMBARDELLA L, et al. Pathogenetic determinants in Kawasaki disease: the haematological point of view[J]. J Cell Mol Med, 2017, 21(4): 632-639. |
17 | 马乐, 杜忠东. 川崎病血管内皮细胞损伤机制的研究进展[J]. 中华儿科杂志, 2016, 54(2): 158-160. |
MA L, DU Z D. Advances in the pathogenesis of vascular endothelial cells injury in Kawasaki disease[J]. Chinese Journal of Pediatrics, 2016, 54(2): 158-160. | |
18 | 中国医师协会风湿免疫科医师分会自身抗体检测专业委员会. 抗中性粒细胞胞浆抗体检测的临床应用专家共识[J].中华检验医学杂志, 2018, 41(9): 644-650. |
The Committee of the Autoantibodies Detection of Rheumatology and Immunology Physicians Committee of Chinese Medical Doctor Association. Experts consensus on the clinical application of antineutrophil cytoplasmic antibodies detection[J].Chinese Journal of Laboratory Medicine, 2018,41(9):644-650. | |
19 | LIBERAL R, MIELI-VERGANI G, VERGANI D. Clinical significance of autoantibodies in autoimmune hepatitis[J]. J Autoimmun, 2013, 46: 17-24. |
20 | 江志贵, 刘玲, 杨翠艳, 等. 抗中性粒细胞抗体在川崎病诊断中的价值[J]. 中国当代儿科杂志, 2012, 14(1): 45-47. |
JIANG Z G, LIU L, YANG C Y, et al. Value of anti-neutrophil cytoplasmic antibody in diagnosis of Kawasaki disease[J].Chinese Journal of Contemporary Pediatrics, 2012, 14(1): 45-47. | |
21 | 刘坦, 孟晓峰, 杜世杰. 三种方法检测抗中性粒细胞胞浆抗体的比较分析[J]. 国际医药卫生导报, 2018, 24(4): 590-592. |
LIU T, MENG X F, DU S J. Three methods for detecting antineutrophil cytoplasmic antibodies[J].International Medicine and Health Guildance News, 2018, 24(4): 590-592. | |
22 | van DER MOLEN R G, HAMANN D, JACOBS J F, et al. Anti-SSA antibodies are present in immunoglobulin preparations[J]. Transfusion, 2015, 55(4): 832-837. |
23 | BRIGHT P D, SMITH L, USHER J, et al. False interpretation of diagnostic serology tests for patients treated with pooled human immunoglobulin G infusions: a trap for the unwary[J]. Clin Med, 2015, 15(2): 125-129. |
24 | 赵建美, 王晓华. 川崎病患儿血清抗内皮细胞抗体和抗中性粒细胞胞浆抗体检测的临床意义[J]. 中国当代儿科杂志, 2014, 16(7): 740-744. |
ZHAO J M, WANG X H. Clinical significance of anti-neutrophil cytoplasmic antibodies and anti-endothelial cell antibodies in children with Kawasaki disease[J].Chinese Journal of Contemporary Pediatrics, 2014, 16(7): 740-744. | |
25 | RUAN Y, YE B, ZHAO X. Clinical characteristics of Kawasaki syndrome and the risk factors for coronary artery lesions in China[J]. Pediatr Infect Dis J, 2013, 32(10): e397-402. |
26 | PIAO J H, JIN L H, LV J, et al. Epidemiological investigation of Kawasaki disease in Jilin Province of China from 2000 to 2008[J]. Cardiol Young, 2010, 20(4): 426-432. |
27 | TAKEKOSHI N, KITANO N, TAKEUCHI T, et al. Analysis of age, sex, lack of response to intravenous immunoglobulin, and development of coronary artery abnormalities in children with Kawasaki disease in Japan[J]. JAMA Netw Open, 2022, 5(6): e2216642. |
28 | KAYAPINAR O, OZDE C, KAYA A. Relationship between the reciprocal change in inflammation-related biomarkers (fibrinogen-to-albumin and hsCRP-to-albumin ratios) and the presence and severity of coronary slow flow[J]. Clin Appl Thromb Hemost, 2019, 25: 1076029619835383. |
29 | 张玉坤, 黄春华, 杨蕾, 等. 血清白蛋白、血沉、血小板/淋巴细胞比值、中性粒细胞/淋巴细胞比值与川崎病患儿冠脉病变程度的关系[J]. 中国医师杂志, 2023, 25(1): 23-27. |
ZHANG Y K, HUANG C H, YANG L, et al. The relationship between albumin, erythrocyte sedimentation rate, platelet/lymphocyte ratio, neutrophil/lymphocyte ratio and the degree of coronary artery disease in children with Kawasaki disease[J]. Journal of Chinese Physician, 2023, 25(1): 23-27. | |
30 | ARQUES S. Human serum albumin in cardiovascular diseases[J]. Eur J Intern Med, 2018, 52: 8-12. |
31 | FUKAZAWA R, KOBAYASHI J, AYUSAWA M, et al. JCS/JSCS 2020 guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease[J]. Circ J, 2020, 84(8): 1348-1407. |
32 | XIE T, WANG Y, FU S, et al. Predictors for intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease[J]. Pediatr Rheumatol Online J, 2017, 15(1): 17. |
[1] | LIU Chuxuan, ZUO Jiaxin, XIONG Ping. A nomogram based on ultrasound scoring parameters and clinical indicators for differentiating primary Sjὅgren′s syndrome from IgG4-related sialadenitis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 373-380. |
[2] | LU Jiaping, LIU Xing, ZHANG Linshan, ZHAO Lin, ZHANG Min, LI Xiaoying, LIU Yuejun. Relationship between abdominal fat area and first-phase insulin secretion function of pancreatic β-cells in patients with type 2 diabetes [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 42-50. |
[3] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
[4] | YANG Jingyu, CHEN Liubao, WANG Kangtai, YANG Xingzhi, YU Haitao. Establishment and evaluation of nomogram for differential diagnosis of systemic lupus erythematosus based on laboratory indications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 204-211. |
[5] | TIAN Xiaofan, DONG Yi, LOU Wenhui, ZHANG Qi, QIU Yijie, ZUO Dan, WANG Wenping. A modified clinically relevant post-operative pancreatic fistula risk evaluation model based on ultrasound shear wave elastography: a prospective study [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 437-444. |
[6] | FENG Jiali, PENG Yu, DUAN Junkai. Progress in functional mechanisms and biomarkers of miRNA related to Kawasaki disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 256-260. |
[7] | ZHANG Meng, CUI Qing, ZHU Diqi, ZHANG Yuqi, ZHONG Yumin, SHEN Jie. Coronary angiography review in 21 children with Kawasaki disease complicated with coronary artery disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1535-1541. |
[8] | XUE Linlin, LI Binghan, CHANG Lixian, LI Weikun, LIU Chunyun, LIU Li. Construction and evaluation of a nomogram prediction model for bacterial infection in patients with decompensated hepatitis C cirrhosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 52-60. |
[9] | Yekai WANG, Wei CHEN, Yinghui YANG, Jingze WU, Heping WANG, Yanzhen YAO, Zhoujun BAO. Establishment of a nomogram clinical scoring system for the risk of heterotopic ossification in patients undergoing surgery after fracture [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 166-172. |
[10] | Ying XU, Yi-min CHU, Da-ming YANG, Ji LI, Hai-qin ZHANG, Hai-xia PENG. Construction of a metastasis prediction model of microsatellite instability-high colorectal cancer based on differentially expressed gene assembly [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1197-1206. |
[11] | Li-ting XI, Jin-zhou ZHU, Chen-yan YU, Liu-jing NI, Chun-fang XU, Ai-rong WU. A new rebleeding prediction model and scoring system for patients with acute nonvariceal upper gastrointestinal bleeding [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1491-1497. |
[12] | Ben YUE, Gao-ming WANG, Lu-di YANG, Ran CUI, Feng-rong YU. Construction and application value of prognosis-associated miRNA prediction model in gastric cancer patients [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1436-1445. |
[13] | Fang-fang LIU, Guan-shui BAO, Meng-xia YAN. Construction of a decision-making model for primary headache based on Nomogram [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1323-1329. |
[14] | LÜ Heng-yu, HUANG Chen, XIA Xiang, ZHAO Gang. Establishment of a nomogram model predicting risk factors of postoperative complications after radical gastrectomy for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(7): 894-900. |
[15] | HE Chun-ming, YIN Hang, TANG Jian, DING Yi-zong, FU Yu-jie, ZHAO Xiao-jing. Establishment and internal validation of a prognostic model for elderly patients after lung cancer surgery based on SEER [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1554-1561. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||