
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (6): 784-791.doi: 10.3969/j.issn.1674-8115.2025.06.014
• Review • Previous Articles Next Articles
LIANG Xiaoning, SHI Tingwang, CHEN Yunfeng(
)
Received:2025-02-17
Accepted:2025-04-03
Online:2025-06-28
Published:2025-06-28
Contact:
CHEN Yunfeng
E-mail:drchenyunfeng@sina.com
Supported by:CLC Number:
LIANG Xiaoning, SHI Tingwang, CHEN Yunfeng. Pathogenic mechanisms and therapeutic advances of small colony variants[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 784-791.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.06.014
| Colony and cellular morphology | SCV | NP |
|---|---|---|
| Colony appearance | Small, transparent, needle-like in shape and irregular | Round, smooth, with intact edges, convex and glossy |
| Pigmentation | Reduced or absent | Colorless or colored (varies by species) |
| Hemolytic rings | Diameter reduced or absent | S. aureus exhibits α- or β-hemolysis |
| Size after 24 h culture | Invisible or tiny (1/10 the size of wild-type strains) | Visible to the naked eye, 1‒3 mm or larger |
| Special structure | PA-SCVs: fewer flagella, increased pil and thicker capsule | Normal |
| Cell shape | Incomplete, branched and cross-linked | Round |
| Cell wall | Thickened | Relatively thin |
| Cytoplasm | Homogeneous | Heterogeneous (high peripheral particle density, low central density) |
Tab 1 Comparison of cell and colony morphology between SCVs and normal strains
| Colony and cellular morphology | SCV | NP |
|---|---|---|
| Colony appearance | Small, transparent, needle-like in shape and irregular | Round, smooth, with intact edges, convex and glossy |
| Pigmentation | Reduced or absent | Colorless or colored (varies by species) |
| Hemolytic rings | Diameter reduced or absent | S. aureus exhibits α- or β-hemolysis |
| Size after 24 h culture | Invisible or tiny (1/10 the size of wild-type strains) | Visible to the naked eye, 1‒3 mm or larger |
| Special structure | PA-SCVs: fewer flagella, increased pil and thicker capsule | Normal |
| Cell shape | Incomplete, branched and cross-linked | Round |
| Cell wall | Thickened | Relatively thin |
| Cytoplasm | Homogeneous | Heterogeneous (high peripheral particle density, low central density) |
| Carrier type | Delivery vehicle | Loaded antibiotic | SCV infection model |
|---|---|---|---|
| Lipid Nanoparticles | Poly lactic-co-glycolic acid (PLGA) nanoparticles[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Mesoporous silica nanoparticles (MSNPs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Organically modified (ethylene-bridged) MSNPs (MONs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Nanogels | Dual-responsive nanogels[ | Gentamicin | Mouse peritonitis model |
| Nanogels | Gelatin-alginate composite nanogels[ | Enrofloxacin | Sau-SCV strain |
| Nanogels | Chitosan oligosaccharide-carboxymethyl cellulose composite nanogels[ | Tilmicosin | Sau-SCV strain |
| Nanogels | Composite nanogels[ | Florfenicol | Murine mastitis model |
| Nanogels | Chitosan composite nanogels[ | Glycyrrhizic acid | Sau-SCV strain |
Tab 2 Nanocarrier types for targeted delivery of antibiotics against SCVs
| Carrier type | Delivery vehicle | Loaded antibiotic | SCV infection model |
|---|---|---|---|
| Lipid Nanoparticles | Poly lactic-co-glycolic acid (PLGA) nanoparticles[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Mesoporous silica nanoparticles (MSNPs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Silica Nanoparticles | Organically modified (ethylene-bridged) MSNPs (MONs)[ | Rifampin | Murine macrophage Sau-SCV infection model |
| Nanogels | Dual-responsive nanogels[ | Gentamicin | Mouse peritonitis model |
| Nanogels | Gelatin-alginate composite nanogels[ | Enrofloxacin | Sau-SCV strain |
| Nanogels | Chitosan oligosaccharide-carboxymethyl cellulose composite nanogels[ | Tilmicosin | Sau-SCV strain |
| Nanogels | Composite nanogels[ | Florfenicol | Murine mastitis model |
| Nanogels | Chitosan composite nanogels[ | Glycyrrhizic acid | Sau-SCV strain |
| [1] | SHI T W, WU Q, RUAN Z S, et al. Resensitizing β-lactams by reprogramming purine metabolism in small colony variant for osteomyelitis treatment[J]. Adv Sci (Weinh), 2025, 12(5): e2410781. |
| [2] | ZHOU S Z, RAO Y F, LI J, et al. Staphylococcus aureus small-colony variants: formation, infection, and treatment[J]. Microbiol Res, 2022, 260: 127040. |
| [3] | MAPAR M, RYDZAK T, HOMMES J W, et al. Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants[J]. Trends Microbiol, 2025, 33(2): 223-232. |
| [4] | GIMZA B D, CASSAT J E. Mechanisms of antibiotic failure during Staphylococcus aureus osteomyelitis[J]. Front Immunol, 2021, 12: 638085. |
| [5] | XU A M, ZHANG X X, WANG T, et al. Rugose small colony variant and its hyper-biofilm in Pseudomonas aeruginosa: adaption, evolution, and biotechnological potential[J]. Biotechnol Adv, 2021, 53: 107862. |
| [6] | TSUJINO Y, OGAWA E, ITO K. Thymidine-dependent small-colony variants of Staphylococcus aureus isolated from infective endocarditis in a postlung transplant patient[J]. Transpl Infect Dis, 2024, 26(1): e14176. |
| [7] | GOORMAGHTIGH F, VAN BAMBEKE F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance[J]. Expert Rev Anti Infect Ther, 2024, 22(1/2/3): 87-101. |
| [8] | GUÉRILLOT R, KOSTOULIAS X, DONOVAN L, et al. Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections[J]. Proc Natl Acad Sci USA, 2019, 116(40): 20135-20140. |
| [9] | PROKOPCZUK F I, IM H, CAMPOS-GOMEZ J, et al. Engineered superinfective pf phage prevents dissemination of Pseudomonas aeruginosa in a mouse burn model[J]. mBio, 2023, 14(3): e0047223. |
| [10] | TASHIRO Y, EIDA H, ISHII S, et al. Generation of small colony variants in biofilms by Escherichia coli harboring a conjugative F plasmid[J]. Microbes Environ, 2017, 32(1): 40-46. |
| [11] | WONG FOK LUNG T, MONK I R, ACKER K P, et al. Staphylococcus aureus small colony variants impair host immunity by activating host cell glycolysis and inducing necroptosis[J]. Nat Microbiol, 2020, 5(1): 141-153. |
| [12] | KWIECINSKI J M, HORSWILL A R. Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms[J]. Curr Opin Microbiol, 2020, 53: 51-60. |
| [13] | SHEYKHSARAN E, ABBASI A, MEMAR M Y, et al. The role of Staphylococcus aureus in cystic fibrosis pathogenesis and clinico-microbiological interactions[J]. Diagn Microbiol Infect Dis, 2024, 109(3): 116294. |
| [14] | TOMAZ A P O, SOUZA D C, COGO L L, et al. Thymidine-dependent Staphylococcus aureus and lung function in patients with cystic fibrosis: a 10-year retrospective case-control study[J]. J Bras Pneumol, 2024, 50(4): e20240026. |
| [15] | BURFORD-GORST C M, KIDD S P. Phenotypic variation in Staphylococcus aureus during colonisation involves antibiotic-tolerant cell types[J]. Antibiotics (Basel), 2024, 13(9): 845. |
| [16] | LI X F, BUSCH L M, PIERSMA S, et al. Functional and proteomic dissection of the contributions of CodY, SigB and the hibernation promoting factor HPF to interactions of Staphylococcus aureus USA300 with human lung epithelial cells[J]. J Proteome Res, 2024, 23(10): 4742-4760. |
| [17] | ALVES J, VRIELING M, RING N, et al. Experimental evolution of Staphylococcus aureus in macrophages: dissection of a conditional adaptive trait promoting intracellular survival[J]. mBio, 2024, 15(6): e0034624. |
| [18] | STRAUB J, BAERTL S, VERHEUL M, et al. Antimicrobial resistance: biofilms, small colony variants, and intracellular bacteria[J]. Injury, 2024, 55(Suppl 6): 111638. |
| [19] | JOSSE J, LAURENT F, DIOT A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms[J]. Front Microbiol, 2017, 8: 2433. |
| [20] | XIE S, LI Y, CAO W X, et al. Dual-responsive nanogels with cascaded gentamicin release and lysosomal escape to combat intracellular small colony variants for peritonitis and sepsis therapies[J]. Adv Healthc Mater, 2024, 13(14): e2303671. |
| [21] | SEDLYAROV V, EICHNER R, GIRARDI E, et al. The bicarbonate transporter SLC4A7 plays a key role in macrophage phagosome acidification[J]. Cell Host Microbe, 2018, 23(6): 766-774.e5. |
| [22] | VOLK C F, PROCTOR R A, ROSE W E. The complex intracellular lifecycle of Staphylococcus aureus contributes to reduced antibiotic efficacy and persistent bacteremia[J]. Int J Mol Sci, 2024, 25(12): 6486. |
| [23] | MOLDOVAN A, FRAUNHOLZ M J. In or out: phagosomal escape of Staphylococcus aureus[J]. Cell Microbiol, 2019, 21(3): e12997. |
| [24] | MAGRYŚ A, BOGUT A. microRNA hsa-let-7a facilitates staphylococcal small colony variants survival in the THP-1 macrophages by reshaping inflammatory responses[J]. Int J Med Microbiol, 2021, 311(8): 151542. |
| [25] | GUO H N, TONG Y C, CHENG J H, et al. Biofilm and small colony variants-an update on Staphylococcus aureus strategies toward drug resistance[J]. Int J Mol Sci, 2022, 23(3): 1241. |
| [26] | ZHENG X K, FANG R C, WANG C, et al. Resistance profiles and biological characteristics of rifampicin-resistant Staphylococcus aureus small-colony variants[J]. Infect Drug Resist, 2021, 14: 1527-1536. |
| [27] | GOUNANI Z, KARAMAN D Ş, VENU A P, et al. Coculture of P. aeruginosa and S. aureus on cell derived matrix: An in vitro model of biofilms in infected wounds[J]. J Microbiol Methods, 2020, 175: 105994. |
| [28] | DOUGLAS E J A, DUGGAN S, BRIGNOLI T, et al. The MpsB protein contributes to both the toxicity and immune evasion capacity of Staphylococcus aureus[J]. Microbiology (Reading), 2021, 167(10): 001096. |
| [29] | HÄFFNER N, BÄR J, DENGLER HAUNREITER V, et al. Intracellular environment and agr system affect colony size heterogeneity of Staphylococcus aureus[J]. Front Microbiol, 2020, 11: 1415. |
| [30] | ZHOU K X, LI C, CHEN D M, et al. A review on nanosystems as an effective approach against infections of Staphylococcus aureus[J]. Int J Nanomedicine, 2018, 13: 7333-7347. |
| [31] | CAMPBELL A J, DOTEL R, BRADDICK M, et al. Clindamycin adjunctive therapy for severe Staphylococcus aureus treatment evaluation (CASSETTE): an open-labelled pilot randomized controlled trial[J]. JAC Antimicrob Resist, 2022, 4(1): dlac014. |
| [32] | SUBRAMANIAM S, JOYCE P, CONN C E, et al. Cellular uptake and in vitro antibacterial activity of lipid-based nanoantibiotics are influenced by protein Corona[J]. Biomater Sci, 2024, 12(13): 3411-3422. |
| [33] | LANGLOIS J P, LAROSE A, BROUILLETTE E, et al. Mode of antibacterial action of tomatidine C3-diastereoisomers[J]. Molecules, 2024, 29(2): 343. |
| [34] | VESTERGAARD M, ROSHANAK S, INGMER H. Targeting the ATP synthase in Staphylococcus aureus small colony variants, Streptococcus pyogenes and pathogenic fungi[J]. Antibiotics (Basel), 2021, 10(4): 376. |
| [35] | BERBERICH C E, JOSSE J, LAURENT F, et al. Dual antibiotic loaded bone cement in patients at high infection risks in arthroplasty: rationale of use for prophylaxis and scientific evidence[J]. World J Orthop, 2021, 12(3): 119-128. |
| [36] | JOOSTEN U, JOIST A, GOSHEGER G, et al. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis[J]. Biomaterials, 2005, 26(25): 5251-5258. |
| [37] | ENSING G T, VAN HORN J R, VAN DER MEI H C, et al. Copal bone cement is more effective in preventing biofilm formation than Palacos R-G[J]. Clin Orthop Relat Res, 2008, 466(6): 1492-1498. |
| [38] | JAIKUMPUN P, RUKSAKIET K, STERCZ B, et al. Antibacterial effects of bicarbonate in media modified to mimic cystic fibrosis sputum[J]. Int J Mol Sci, 2020, 21(22): 8614. |
| [39] | RÖHRIG C, HUEMER M, LORGÉ D, et al. Targeting hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus[J]. mBio, 2020, 11(2): e00209-20. |
| [40] | MAGHREBI S, JOYCE P, JAMBHRUNKAR M, et al. Poly(lactic- co-glycolic) acid-lipid hybrid microparticles enhance the intracellular uptake and antibacterial activity of rifampicin[J]. ACS Appl Mater Interfaces, 2020, 12(7): 8030-8039. |
| [41] | JOYCE P, ULMEFORS H, MAGHREBI S, et al. Enhancing the cellular uptake and antibacterial activity of rifampicin through encapsulation in mesoporous silica nanoparticles[J]. Nanomaterials (Basel), 2020, 10(4): 815. |
| [42] | JAMBHRUNKAR M, MAGHREBI S, DODDAKYATHANAHALLI D, et al. Mesoporous organosilica nanoparticles to fight intracellular staphylococcal aureus infections in macrophages[J]. Pharmaceutics, 2023, 15(4): 1037. |
| [43] | LUO W H, LIU J H, ALGHARIB S A, et al. Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants[J]. J Vet Sci, 2022, 23(3): e48. |
| [44] | LUO W H, LIU J H, ZHANG S L, et al. Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels[J]. J Vet Sci, 2022, 23(1): e1. |
| [45] | LIU J H, JU M J, WU Y F, et al. Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants[J]. J Vet Sci, 2022, 23(5): e78. |
| [46] | JU M J, LIU J H, GUAN D, et al. WITHDRAWN: antibacterial activity of a novel glycyrrhizic acid-loaded chitosan composite nanogel in vitro against Staphylococcus aureus small colony variants[J]. Curr Drug Deliv, 2025. |
| [47] | KARAMI A, FARIVAR F, DE PRINSE T J, et al. Facile multistep synthesis of ZnO-coated β-NaYF4: Yb/Tm upconversion nanoparticles as an antimicrobial photodynamic therapy for persistent Staphylococcus aureus small colony variants[J]. ACS Appl Bio Mater, 2021, 4(8): 6125-6136. |
| [1] | CHEN Zixuan, LIU Min. Research progress on immune cell therapy in renal cell carcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 916-925. |
| [2] | ZOU Peichen, LIU Hongyu, AIHEMAITI· Ayinazhaer, ZHU Liang, TANG Yabin, LEI Huimin. Metabolic profiling of lung cancer cells with acquired resistance to sotorasib [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 138-149. |
| [3] | SUN Chenwei, HAI Wangxi, QU Qian, XI Yun. [18F]F-FMISO and [18F]F-FLT PET/CT dual-nuclide imaging for in vivo prediction of drug resistance in pancreatic cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 60-68. |
| [4] | ZHANG Yesheng, YANG Yijing, HUANG Yiwen, SHI Longyu, WANG Manyuan, CHEN Sisi. Research progress in immune cells regulating drug resistance of tumor cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 830-838. |
| [5] | WANG Kexuan, LIU Fang, TU Jiajia, MAO Yiping. Exploration of the use of antibiotics in a hospital based on point prevalence survey [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 365-372. |
| [6] | CUI Zhiyan, CHEN Yao, TAO Yue, SHEN Shuhong, LI Hui. Effects of PRPS1 I72 mutations on drug resistance in acute lymphoblastic leukemia and its mechanisms [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 977-987. |
| [7] | ZHAO Fumao, PENG Mei, PENG Xiaolu, SHU Weiwei, PENG Li. Changes in drug resistance of Acinetobacter baumannii during the change of meropenem concentration in the environment and its mechanism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1396-1407. |
| [8] | LU Wenqing, MENG Zhouwenli, YU Yongfeng, LU Shun. Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 535-544. |
| [9] | Ting-wang SHI, Yun-feng CHEN. Preparation of cell membrane-coated nanoparticles and its application to antimicrobial [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 953-958. |
| [10] | Jian-hua XU, Ping JIANG, Jiong DENG. Expression and significance of ATP-binding cassette superfamily G member 2 in lung cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 830-833. |
| [11] | Yan-yun HAO, Si-hui YÜ, Jing LU, Xiang GU, Fan ZHANG, Jin-ke CHENG, Tian-shi WANG. Role of SIRT3 SUMOylation deficiency in the proliferation and chemotherapeutic sensitivity of breast cancer cells MCF7 [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1557-1563. |
| [12] | Hui KE, Xu-wei GUI, Jin GU. Diagnostic value of Xpert MTB/RIF in lymph node tuberculosis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1318-1322. |
| [13] | WANG Yu-ting, LIU Jin-yan, SHI Ce, ZHAO Jun-tao, XIANG Ming-jie. Knocking out ERG3 gene of Candida albicans and its effect on drug resistance [J]. , 2020, 40(2): 163-. |
| [14] | LIU Xin-ying, LU Wen-qing, SHEN Xin-xin, MA Rui -xiang, LIU Peng-yi, MA Jiao. Recent advances in the role of SIRT3 in leukemia drug resistance [J]. , 2019, 39(3): 331-. |
| [15] | DING Wen-jing1, WU Hui1, FAN Rong1, XU Min2, QIU Xiao-chun1. New advances in translational medicine research in the field of tumor [J]. , 2018, 38(9): 1133-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||