
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (12): 1662-1670.doi: 10.3969/j.issn.1674-8115.2025.12.012
• Review • Previous Articles
QIN Zihao1, YUAN Hong1, LU Yao1, LENG Yiming1,2(
)
Received:2025-07-31
Accepted:2025-11-11
Online:2025-12-19
Published:2025-12-19
Contact:
LENG Yiming
E-mail:lyiming2010xy@126.com
Supported by:CLC Number:
QIN Zihao, YUAN Hong, LU Yao, LENG Yiming. Multiple roles of CD34⁺ cell heterogeneity in cardiovascular injury and repair[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1662-1670.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.12.012
| Cell subset | Distribution | Marker | Principal function |
|---|---|---|---|
| HSCs | Bone marrow, peripheral blood | Lin-, CD34+, CD38-, CD90+, CD45RA- | Hematopoiesis and long-term reconstitution |
| EPCs | Bone marrow, peripheral blood, vascular intima, multiple organs | CD34+, CD133+, VEGFR2+, CD31+, VE-cadherin+, vWF+, CD45- | Endothelial repair and angiogenesis |
| Inflammatory cells | Bone marrow, peripheral blood, tissues | CD45+ | Immune responses and inflammation |
| Fibroblasts | Interstitium across organs | CD34+, PDGFRα+, PI16+ (mouse) | Matrix production, tissue repair, and regulation of fibrosis |
| Fibroblast progenitors | Multiple organs | CD34+ Sca1+(mouse), PI16+ (mouse), POSTN+ | Differentiation into fibroblasts/myofibroblasts |
| SMCs | Multiple organs | αSMA+, MYH11+, SM22α+, CNN1+ | Contractility and vascular tone, and remodeling in injury/fibrosis |
| SMPCs | Multiple organs | Sca1+ (mouse), CD34+, PDGFRβ+ | Differentiation into SMCs and fibroblast-like lineages |
| MSCs | Bone marrow, adipose tissue, multiple organs | CD29+, CD44+, CD73+, CD90+, CD105+, CD34+ | Osteogenic, chondrogenic, and adipogenic differentiation |
Tab 1 Overview of tissue distribution, phenotypic markers, and functions of CD34⁺ cells and their differentiated lineages
| Cell subset | Distribution | Marker | Principal function |
|---|---|---|---|
| HSCs | Bone marrow, peripheral blood | Lin-, CD34+, CD38-, CD90+, CD45RA- | Hematopoiesis and long-term reconstitution |
| EPCs | Bone marrow, peripheral blood, vascular intima, multiple organs | CD34+, CD133+, VEGFR2+, CD31+, VE-cadherin+, vWF+, CD45- | Endothelial repair and angiogenesis |
| Inflammatory cells | Bone marrow, peripheral blood, tissues | CD45+ | Immune responses and inflammation |
| Fibroblasts | Interstitium across organs | CD34+, PDGFRα+, PI16+ (mouse) | Matrix production, tissue repair, and regulation of fibrosis |
| Fibroblast progenitors | Multiple organs | CD34+ Sca1+(mouse), PI16+ (mouse), POSTN+ | Differentiation into fibroblasts/myofibroblasts |
| SMCs | Multiple organs | αSMA+, MYH11+, SM22α+, CNN1+ | Contractility and vascular tone, and remodeling in injury/fibrosis |
| SMPCs | Multiple organs | Sca1+ (mouse), CD34+, PDGFRβ+ | Differentiation into SMCs and fibroblast-like lineages |
| MSCs | Bone marrow, adipose tissue, multiple organs | CD29+, CD44+, CD73+, CD90+, CD105+, CD34+ | Osteogenic, chondrogenic, and adipogenic differentiation |
| [1] | MARVASTI T B, ALIBHAI F J, WEISEL R D, et al. CD34+ stem cells: promising roles in cardiac repair and regeneration[J]. Can J Cardiol, 2019, 35(10): 1311-1321. |
| [2] | ASAHARA T, MUROHARA T, SULLIVAN A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302): 964-966. |
| [3] | AUGUSTIN H G, KOH G Y. A systems view of the vascular endothelium in health and disease[J]. Cell, 2024, 187(18): 4833-4858. |
| [4] | PRASAD M, CORBAN M T, HENRY T D, et al. Promise of autologous CD34+ stem/progenitor cell therapy for treatment of cardiovascular disease[J]. Cardiovasc Res, 2020, 116(8): 1424-1433. |
| [5] | WANG X Y, WANG R L, JIANG L J, et al. Endothelial repair by stem and progenitor cells[J]. J Mol Cell Cardiol, 2022, 163: 133-146. |
| [6] | ALESSANDRI G, GIRELLI M, TACCAGNI G, et al. Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors[J]. Lab Investig, 2001, 81(6): 875-885. |
| [7] | JIANG L J, CHEN T, SUN S S, et al. Nonbone marrow CD34+ cells are crucial for endothelial repair of injured artery[J]. Circ Res, 2021, 129(8): e146-e165. |
| [8] | HU Y H, ZHANG Z Y, TORSNEY E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice[J]. J Clin Invest, 2004, 113(9): 1258-1265. |
| [9] | PU X Y, ZHU P W, ZHOU X H, et al. CD34+ cell atlas of main organs implicates its impact on fibrosis[J]. Cell Mol Life Sci, 2022, 79(11): 576. |
| [10] | XU X D, ZHU P W, WANG H, et al. CD34+ PI16+ fibroblast progenitors aggravate neointimal lesions of allograft arteries via CCL11/CCR3-PI3K/AKT pathway[J]. Theranostics, 2025, 15(6): 2523-2543. |
| [11] | WU H, YANG X P, CHEN T, et al. Aneurysm is restricted by CD34+ cell-formed fibrous collars through the PDGFRb-PI3K axis[J]. Adv Sci, 2025, 12(7): 2408996. |
| [12] | HASSANPOUR M, SALYBEKOV A A, KOBAYASHI S, et al. CD34 positive cells as endothelial progenitor cells in biology and medicine[J]. Front Cell Dev Biol, 2023, 11: 1128134. |
| [13] | BAUMHETER S, SINGER M S, HENZEL W, et al. Binding of L-selectin to the vascular sialomucin CD34[J]. Science, 1993, 262(5132): 436-438. |
| [14] | ABUSAMRA D B, ALEISA F A, AL-AMOODI A S, et al. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44[J]. Blood Adv, 2017, 1(27): 2799-2816. |
| [15] | CHENG J, BAUMHUETER S, CACALANO G, et al. Hematopoietic defects in mice lacking the sialomucin CD34[J]. Blood, 1996, 87(2): 479-490. |
| [16] | SHI Q, RAFII S, WU M H, et al. Evidence for circulating bone marrow-derived endothelial cells[J]. Blood, 1998, 92(2): 362-367. |
| [17] | ASAHARA T, MASUDA H, TAKAHASHI T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J]. Circ Res, 1999, 85(3): 221-228. |
| [18] | HORDYJEWSKA A, POPIOŁEK Ł, HORECKA A. Characteristics of hematopoietic stem cells of umbilical cord blood[J]. Cytotechnology, 2015, 67(3): 387-396. |
| [19] | TAO J P, CAO X J, YU B Q, et al. Vascular stem/progenitor cells in vessel injury and repair[J]. Front Cardiovasc Med, 2022, 9: 845070. |
| [20] | ZHANG L, ISSA BHALOO S, CHEN T, et al. Role of resident stem cells in vessel formation and arteriosclerosis[J]. Circ Res, 2018, 122(11): 1608-1624. |
| [21] | FINA L, MOLGAARD H V, ROBERTSON D, et al. Expression of the CD34 gene in vascular endothelial cells[J]. Blood, 1990, 75(12): 2417-2426. |
| [22] | MAJESKY M W, HORITA H, OSTRIKER A, et al. Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4[J]. Circ Res, 2017, 120(2): 296-311. |
| [23] | CORSELLI M, CHEN C W, SUN B, et al. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells[J]. Stem Cells Dev, 2012, 21(8): 1299-1308. |
| [24] | YU B Q, CHEN Q S, LE BRAS A, et al. Vascular stem/progenitor cell migration and differentiation in atherosclerosis[J]. Antioxid Redox Signal, 2018, 29(2): 219-235. |
| [25] | DU L P, SUN X T, GONG H, et al. Single cell and lineage tracing studies reveal the impact of CD34+ cells on myocardial fibrosis during heart failure[J]. Stem Cell Res Ther, 2023, 14(1): 33. |
| [26] | XU Q B, ZHANG Z Y, DAVISON F, et al. Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE-deficient mice[J]. Circ Res, 2003, 93(8): e76-e86. |
| [27] | HU Y H, DAVISON F, ZHANG Z Y, et al. Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells[J]. Circulation, 2003, 108(25): 3122-3127. |
| [28] | INGRAM D A, MEAD L E, MOORE D B, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells[J]. Blood, 2005, 105(7): 2783-2786. |
| [29] | HAGENSEN M K, SHIM J, THIM T, et al. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis[J]. Circulation, 2010, 121(7): 898-905. |
| [30] | FUJISAWA T, TURA-CEIDE O, HUNTER A, et al. Endothelial progenitor cells do not originate from the bone marrow[J]. Circulation, 2019, 140(18): 1524-1526. |
| [31] | LI Z W, SOLOMONIDIS E G, MELONI M, et al. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction[J]. Eur Heart J, 2019, 40(30): 2507-2520. |
| [32] | DENG J C, NI Z C, GU W D, et al. Single-cell gene profiling and lineage tracing analyses revealed novel mechanisms of endothelial repair by progenitors[J]. Cell Mol Life Sci, 2020, 77(24): 5299-5320. |
| [33] | SINGHAL M, LIU X T, INVERSO D, et al. Endothelial cell fitness dictates the source of regenerating liver vasculature[J]. J Exp Med, 2018, 215(10): 2497-2508. |
| [34] | WANG X R, BOVE A M, SIMONE G, et al. Molecular bases of VEGFR-2-mediated physiological function and pathological role[J]. Front Cell Dev Biol, 2020, 8: 599281. |
| [35] | SCHNELLER D, HOFER-WARBINEK R, STURTZEL C, et al. Cytokine-like 1 is a novel proangiogenic factor secreted by and mediating functions of endothelial progenitor cells[J]. Circ Res, 2019, 124(2): 243-255. |
| [36] | SHAIK S, MARTIN E, HAYES D, et al. microRNA sequencing of CD34+ sorted adipose stem cells undergoing endotheliogenesis[J]. Stem Cells Dev, 2021, 30(5): 265-288. |
| [37] | SHVEDUNOVA M, AKHTAR A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349. |
| [38] | ZENG L F, XIAO Q Z, MARGARITI A, et al. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells[J]. J Cell Biol, 2006, 174(7): 1059-1069. |
| [39] | GAO J, WANG Y H, LI W, et al. Loss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cells[J]. Gene, 2018, 678: 1-7. |
| [40] | HUANG C Y, LIN F Y, SHIH C M, et al. Moderate to high concentrations of high-density lipoprotein from healthy subjects paradoxically impair human endothelial progenitor cells and related angiogenesis by activating Rho-associated kinase pathways[J]. Arterioscler Thromb Vasc Biol, 2012, 32(10): 2405-2417. |
| [41] | HUANG Z H, SUN A J. Metabolism, inflammation, and cardiovascular diseases from basic research to clinical practice[J]. Cardiol Plus, 2023, 8(1): 4-5. |
| [42] | TOUSOULIS D, ANDREOU I, ANTONIADES C, et al. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases[J]. Atherosclerosis, 2008, 201(2): 236-247. |
| [43] | PASSMAN J N, DONG X R, WU S P, et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells[J]. Proc Natl Acad Sci U S A, 2008, 105(27): 9349-9354. |
| [44] | XIE Y, LU Y R, NI H, et al. Abstract 12723: smooth muscle-derived CD34+ cells after vascular injury contribute to vascular remodeling[C]//American Heart Association Scientific Sessions 2023. Philadelphia: American Heart Association, 2023. |
| [45] | YEH E T H, ZHANG S, WU H D, et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo[J]. Circulation, 2003, 108(17): 2070-2073. |
| [46] | HILL K L, OBRTLIKOVA P, ALVAREZ D F, et al. Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function[J]. Exp Hematol, 2010, 38(3): 246-257.e1. |
| [47] | NI Z C, DENG J C, POTTER C M F, et al. Recipient c-Kit lineage cells repopulate smooth muscle cells of transplant arteriosclerosis in mouse models[J]. Circ Res, 2019, 125(2): 223-241. |
| [48] | YANG F, CHEN Q S, YANG M, et al. Macrophage-derived MMP-8 determines smooth muscle cell differentiation from adventitia stem/progenitor cells and promotes neointima hyperplasia[J]. Cardiovasc Res, 2020, 116(1): 211-225. |
| [49] | HELDIN C H, WESTERMARK B. Mechanism of action and in vivo role of platelet-derived growth factor[J]. Physiol Rev, 1999, 79(4): 1283-1316. |
| [50] | WU Y, SHEN Y, KANG K, et al. Effects of estrogen on growth and smooth muscle differentiation of vascular wall-resident CD34+ stem/progenitor cells[J]. Atherosclerosis, 2015, 240(2): 453-461. |
| [51] | ROSS J J, HONG Z G, WILLENBRING B, et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells[J]. J Clin Invest, 2006, 116(12): 3139-3149. |
| [52] | PESCE M, DUDA G N, FORTE G, et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease[J]. Nat Rev Cardiol, 2023, 20(5): 309-324. |
| [53] | BUECHLER M B, PRADHAN R N, KRISHNAMURTY A T, et al. Cross-tissue organization of the fibroblast lineage[J]. Nature, 2021, 593(7860): 575-579. |
| [54] | XIE J, JIANG L J, WANG J Z, et al. Multilineage contribution of CD34+ cells in cardiac remodeling after ischemia/reperfusion injury[J]. Basic Res Cardiol, 2023, 118(1): 17. |
| [55] | DU L P, WANG X Y, GUO Y, et al. Altered lipid metabolism promoting cardiac fibrosis is mediated by CD34+ cell-derived FABP4+ fibroblasts[J]. Exp Mol Med, 2024, 56(8): 1869-1886. |
| [56] | WU J, MONTANIEL K R C, SALEH M A, et al. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension[J]. Hypertension, 2016, 67(2): 461-468. |
| [57] | SONG Y W, YANG J Y, LI T R, et al. CD34+ cell-derived fibroblast-macrophage cross-talk drives limb ischemia recovery through the OSM-ANGPTL signaling axis[J]. Sci Adv, 2023, 9(15): eadd2632. |
| [58] | CHEN D X, LI K, WEI L L, et al. Neointimal hyperplasia after endoluminal injury in mice is dependent on tissue factor- and angiopoietin-2 dependent interferon gamma production by fibrocytes and macrophages[J]. Front Immunol, 2024, 15: 1345199. |
| [59] | VAN AMERONGEN M J, BOU-GHARIOS G, ER P P, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction[J]. J Pathol, 2008, 214(3): 377-386. |
| [60] | QIN L, LIU N, BAO C L M, et al. Mesenchymal stem cells in fibrotic diseases: the two sides of the same coin[J]. Acta Pharmacol Sin, 2023, 44(2): 268-287. |
| [61] | LI X Y, SUN H, LI D, et al. CD34+ synovial fibroblasts exhibit high osteogenic potential in synovial chondromatosis[J]. Cell Tissue Res, 2024, 397(1): 37-50. |
| [62] | DAMIANO G, RINALDI R, POMPILIO G, et al. Liraglutide prevents hyperglycemia-induced senescence and proinflammatory monocyte differentiation in CD34+ hematopoietic stem cells[C]// Frontiers in CardioVascular Biomedicine 2024. Amsterdam: European Society of Cardiology, 2024. |
| [63] | LI Y, LIU Z X, HAN X M, et al. Dynamics of endothelial cell generation and turnover in arteries during homeostasis and diseases[J]. Circulation, 2024, 149(2): 135-154. |
| [64] | RATAJCZAK J, KUCIA M, MIERZEJEWSKA K, et al. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells: implications for stem cell therapies in regenerative medicine[J]. Stem Cells Dev, 2013, 22(3): 422-430. |
| [65] | MATHIYALAGAN P, LIANG Y X, KIM D, et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb[J]. Circ Res, 2017, 120(9): 1466-1476. |
| [66] | MAUSE S F, RITZEL E, DECK A, et al. Endothelial progenitor cells modulate the phenotype of smooth muscle cells and increase their neointimal accumulation following vascular injury[J]. Thromb Haemost, 2022, 122(3): 456-469. |
| [67] | SHUDO Y, COHEN J E, MACARTHUR J W, et al. Spatially oriented, temporally sequential smooth muscle cell-endothelial progenitor cell bi-level cell sheet neovascularizes ischemic myocardium[J]. Circulation, 2013, 128(11_suppl_1): S59-S68. |
| [68] | CARNEIRO G D, SIELSKI M S, VIEIRA C P, et al. Administration of endothelial progenitor cells accelerates the resolution of arterial thrombus in mice[J]. Cytotherapy, 2019, 21(4): 444-459. |
| [69] | JARAJAPU Y P R, HAZRA S, SEGAL M, et al. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms[J]. PLoS One, 2014, 9(4): e93965. |
| [70] | LIM A A, POUYABAHAR D, ASHRAF M, et al. Single-cell transcriptome analysis reveals CD34 as a marker of human sinoatrial node pacemaker cardiomyocytes[J]. Nat Commun, 2024, 15: 10206. |
| [71] | EPPINGA R N, HAGEMEIJER Y, BURGESS S, et al. Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality[J]. Nat Genet, 2016, 48(12): 1557-1563. |
| [72] | RIGATO M, AVOGARO A, FADINI G P. Levels of circulating progenitor cells, cardiovascular outcomes and death: a meta-analysis of prospective observational studies[J]. Circ Res, 2016, 118(12): 1930-1939. |
| [73] | LIU C T, GUO J Y, CHOU R H, et al. Endothelial progenitor cells and major adverse cardiovascular events in patients receiving elective coronary angiography[J]. Cardiol Plus, 2023, 8(1): 37-45. |
| [74] | OZCAN I, TOYA T, CORBAN M T, et al. Circulating progenitor cells are associated with plaque progression and long-term outcomes in heart transplant patients[J]. Cardiovasc Res, 2022, 118(7): 1703-1712. |
| [75] | HENRY T D, LOSORDO D W, TRAVERSE J H, et al. Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials[J]. Eur Heart J, 2018, 39(23): 2208-2216. |
| [76] | SUNG P H, LI Y C, LEE M S, et al. Intracoronary injection of autologous CD34+ cells improves one-year left ventricular systolic function in patients with diffuse coronary artery disease and preserved cardiac performance: a randomized, open-label, controlled phase Ⅱ clinical trial[J]. J Clin Med, 2020, 9(4): 1043. |
| [77] | DEN DEKKER W K, HOUTGRAAF J H, ONUMA Y, et al. Final results of the HEALING ⅡB trial to evaluate a bio-engineered CD34 antibody coated stent (GenousTM Stent) designed to promote vascular healing by capture of circulating endothelial progenitor cells in CAD patients[J]. Atherosclerosis, 2011, 219(1): 245-252. |
| [78] | JAKOBSEN L, CHRISTIANSEN E H, FREEMAN P, et al. Randomized clinical comparison of the dual-therapy CD34 antibody-covered sirolimus-eluting combo stent with the sirolimus-eluting orsiro stent in patients treated with percutaneous coronary intervention: the SORT OUT X trial[J]. Circulation, 2021, 143(22): 2155-2165. |
| [79] | JAGUSZEWSKI M, ALOYSIUS R, WANG W, et al. The REMEDEE-OCT study: an evaluation of the bioengineered COMBO dual-therapy CD34 antibody-covered sirolimus-eluting coronary stent compared with a cobalt-chromium everolimus-eluting stent in patients with acute coronary syndromes: insights from optical coherence tomography imaging analysis[J].JACC Cardiovasc Interv, 2017, 10(5): 489-499. |
| [1] | MA Huihua, YAN Kuipo, LIU Gang, XU Yazhou, ZHANG Lei, SUN Yanqin. Causal relationship between gut microbiota and cardiovascular diseases: a bidirectional Mendelian randomization analysis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1606-1619. |
| [2] | LI Ping, JIANG Huiru, YE Mengyue, WANG Yayu, CHEN Xiaoyu, YUAN Ancai, XU Wenjie, DAI Huimin, CHEN Xi, YAN Xiaoxiang, TU Shengxian, ZHENG Yuanqi, ZHANG Wei, PU Jun. Analysis of epidemiological characteristics of risk factors for cardiovascular diseases and malignant tumors based on the Shanghai community elderly cohort [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 617-625. |
| [3] | Xieyire·HAMULATI , ZHAO Qian, LI Cheng, SONG Ning, WANG Ying, Gulijiehere·TUERXUN , PU Jun, YANG Yining, LI Xiaomei. Clinical characteristics and health economics evaluation of real-world-based ischemic cardiovascular and cerebrovascular co-morbidities [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 778-785. |
| [4] | HE Zhijie, HE Jinchun, ZHANG Yanpei, WANG Yaodong, WANG Zhanke. Analysis of lipoprotein subclasses of family with familial hypertriglyceridemia based on VAP method [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 482-489. |
| [5] | ZHANG Tong, TIAN Xue, ZUO Yingting, ZHENG Manqi, ZHANG Yijun, WU Shouling, CHEN Shuohua, MA Gaoting, TONG Xu, WANG Anxin, MO Dapeng. Association of triglyceride-glucose index with cardiovascular disease in people without traditional risk factors [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 267-274. |
| [6] | Ming-qi CAI, Yan CHEN, Kai-bin LIN, Dong HUANG. Advances in the role of growth differentiation factor 11 in cardiovascular diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 834-838. |
| [7] | Min SUN, Dong-ying ZHANG. Progress of cardioprotection effect of sodium-glucose cotransporter 2 inhibitor on patients with type 2 diabetes [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 391-395. |
| [8] | Hua-jie DAI, Li-ping XUAN, Jia-li XIANG, Hong LIN, Zhi-yun ZHAO, Tian-ge WANG, Mian LI, Yu XU, Jie-li LU, Wei-qing WANG, Yu-fang BI, Min XU. Correlation between healthy vascular aging and prevalent cardiovascular disease risk in middle-aged and elderly people in the community of Shanghai [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 223-227. |
| [9] | LU Yan-qiao, SHEN Lan, HE Ben. Application of artificial intelligence in assisted diagnosis and treatment of cardiovascular disease [J]. , 2020, 40(2): 259-. |
| [10] | ZHANG Xia, ZHENG Lei-lei, LIU Yan, MING Ye, HE Hao-jue, HU Yun. Effect of poly (L-lactic acid caprolactone)/gelatin blend electrospun on angiogenesis of rat bone marrow-derived endothelial progenitor cells [J]. , 2018, 38(5): 499-. |
| [11] | JI Hai-ying, YOU Sha-sha, CAO Hui-min, HE Bin. Clinical research of PCSK9 inhibitors in reducing low density lipoprotein cholesterol [J]. , 2018, 38(2): 212-. |
| [12] | YUE Dan-dan, WEI Zhen-yu, CHEN Xin, WANG Jia-yan, LU Wen-mei, ZHONG Ping, WU Dan-hong. Predictive value of circulating endothelial progenitor cells in prognosis of acute ischemic stroke [J]. , 2017, 37(7): 964-. |
| [13] | ZHAO Dan-dan, GU Yan-yun, WANG Ji-qiu, HU Chun-xiu, HONG Jie, ZHANG Yi-fei, the SPREAD-DIMCAD study group. Study on the predictive effect of baseline lipid profiles on recurrent cardiovascular events after antidiabetic drugs intervention [J]. , 2017, 37(6): 744-. |
| [14] | MIN Dan-yan, LU Xiao-rong, LI Zhen-yuan, YAN Hao, ZHANG Min-Fang, WANG Qin, YUAN Jiang-zi, NI Zhao-hui, FANG Wei. Low triiodothyronine syndrome can predict poor prognosis in peritoneal dialysis patients#br# [J]. , 2017, 37(11): 1501-. |
| [15] | GAO Jin-li, PENG Kui, NI Heng-ru, HUANG Xiao-lin, BI Yu-fang, XU Min. Study on the association between metabolic syndrome and risk of cardiovascular disease in middle-aged and elderly community-dwelling residents in Shanghai [J]. , 2016, 36(9): 1341-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||