
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (9): 1197-1206.doi: 10.3969/j.issn.1674-8115.2021.09.010
• Basic research • Previous Articles Next Articles
Ying XU(
), Yi-min CHU, Da-ming YANG, Ji LI, Hai-qin ZHANG, Hai-xia PENG(
)
Received:2021-03-10
Online:2021-09-28
Published:2021-08-24
Contact:
Hai-xia PENG
E-mail:xy3459@shtrhospital.com;phx1101@shtrhospital.com
Supported by:CLC Number:
Ying XU, Yi-min CHU, Da-ming YANG, Ji LI, Hai-qin ZHANG, Hai-xia PENG. Construction of a metastasis prediction model of microsatellite instability-high colorectal cancer based on differentially expressed gene assembly[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1197-1206.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.09.010
| Characteristic | Metastasis group (n=21) | Non-metastasis group (n=42) |
|---|---|---|
| Gender/n(%) | ||
| Female | 12 (57.1) | 22 (52.4) |
| Male | 9 (42.9) | 20 (47.6) |
| Race/n(%) | ||
| Unknown | 9 (42.9) | 7 (16.7) |
| Asian | 0 (0) | 1 (2.4) |
| Black or African American | 2 (9.5) | 7 (16.7) |
| White | 10 (47.6) | 27 (64.3) |
| Survival status/n(%) | ||
| Alive | 17 (81.0) | 41 (97.6) |
| Dead | 4 (19.0) | 1 ( 2.4) |
Tab 1 Basic information of 63 included patients
| Characteristic | Metastasis group (n=21) | Non-metastasis group (n=42) |
|---|---|---|
| Gender/n(%) | ||
| Female | 12 (57.1) | 22 (52.4) |
| Male | 9 (42.9) | 20 (47.6) |
| Race/n(%) | ||
| Unknown | 9 (42.9) | 7 (16.7) |
| Asian | 0 (0) | 1 (2.4) |
| Black or African American | 2 (9.5) | 7 (16.7) |
| White | 10 (47.6) | 27 (64.3) |
| Survival status/n(%) | ||
| Alive | 17 (81.0) | 41 (97.6) |
| Dead | 4 (19.0) | 1 ( 2.4) |
| DEG | Full name of gene | FDR | log2 FC |
|---|---|---|---|
| Up-regulated | |||
| CA1 | Carbonic anhydrase 1 | 5.85×10-10 | 5.012 |
| IGLJ2 | Immunoglobulin lambda joining 2 | 8.21×10-6 | 4.686 |
| MS4A12 | Membrane spanning 4-domains A12 | 3.68×10-6 | 4.622 |
| SST | Somatostatin | 9.04×10-7 | 4.547 |
| GCG | Glucagon | 1.58×10-3 | 3.987 |
| SLC26A3 | Solute carrier family 26 member 3 | 2.87×10-5 | 3.960 |
| IGKV3OR2-5 | Immunoglobulin κ variable 3 or 2-5 (pseudogene) | 4.42×10-3 | 3.901 |
| OGDHL | Oxoglutarate dehydrogenase l | 1.53×10-5 | 3.878 |
| AQP8 | Aquaporin 8 | 4.66×10-4 | 3.828 |
| HTR3C | 5-hydroxytryptamine receptor 3C | 6.22×10-3 | 3.813 |
| Down-regulated | |||
| GP2 | Glycoprotein 2 | 8.44×10-5 | -4.070 |
| UICLM | Up-regulated in colorectal cancer liver metastasis | 3.59×10-2 | -3.663 |
| FGL1 | Fibrinogen like 1 | 1.08×10-2 | -3.245 |
| GPRC6A | G protein-coupled receptor class C group 6 member A | 1.91×10-2 | -3.231 |
| DEFA6 | Defensin α 6 | 3.69×10-2 | -3.231 |
| ACTL8 | Actin like 8 | 6.77×10-5 | -3.161 |
| HSD3B1 | Hydroxy-δ-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 1 | 2.12×10-2 | -2.789 |
| PADI3 | Peptidyl arginine deiminase 3 | 2.72×10-2 | -2.509 |
| MRLN | Myoregulin | 3.02×10-2 | -2.477 |
| SLC9A4 | Solute carrier family 9 member A4 | 2.03×10-2 | -2.344 |
Tab 2 Top 10 up-regulated and down-regulated DEGs between metastasis and non-metastasis group
| DEG | Full name of gene | FDR | log2 FC |
|---|---|---|---|
| Up-regulated | |||
| CA1 | Carbonic anhydrase 1 | 5.85×10-10 | 5.012 |
| IGLJ2 | Immunoglobulin lambda joining 2 | 8.21×10-6 | 4.686 |
| MS4A12 | Membrane spanning 4-domains A12 | 3.68×10-6 | 4.622 |
| SST | Somatostatin | 9.04×10-7 | 4.547 |
| GCG | Glucagon | 1.58×10-3 | 3.987 |
| SLC26A3 | Solute carrier family 26 member 3 | 2.87×10-5 | 3.960 |
| IGKV3OR2-5 | Immunoglobulin κ variable 3 or 2-5 (pseudogene) | 4.42×10-3 | 3.901 |
| OGDHL | Oxoglutarate dehydrogenase l | 1.53×10-5 | 3.878 |
| AQP8 | Aquaporin 8 | 4.66×10-4 | 3.828 |
| HTR3C | 5-hydroxytryptamine receptor 3C | 6.22×10-3 | 3.813 |
| Down-regulated | |||
| GP2 | Glycoprotein 2 | 8.44×10-5 | -4.070 |
| UICLM | Up-regulated in colorectal cancer liver metastasis | 3.59×10-2 | -3.663 |
| FGL1 | Fibrinogen like 1 | 1.08×10-2 | -3.245 |
| GPRC6A | G protein-coupled receptor class C group 6 member A | 1.91×10-2 | -3.231 |
| DEFA6 | Defensin α 6 | 3.69×10-2 | -3.231 |
| ACTL8 | Actin like 8 | 6.77×10-5 | -3.161 |
| HSD3B1 | Hydroxy-δ-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 1 | 2.12×10-2 | -2.789 |
| PADI3 | Peptidyl arginine deiminase 3 | 2.72×10-2 | -2.509 |
| MRLN | Myoregulin | 3.02×10-2 | -2.477 |
| SLC9A4 | Solute carrier family 9 member A4 | 2.03×10-2 | -2.344 |
| 1 | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
| 2 | 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28. |
| 3 | Schreuders EH, Ruco A, Rabeneck L, et al. Colorectal cancer screening: a global overview of existing programmes[J]. Gut, 2015, 64(10): 1637-1649. |
| 4 | Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(3): 177-193. |
| 5 | Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer, 1975‒2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates[J]. Cancer, 2010, 116(3): 544-573. |
| 6 | Sargent D, Sobrero A, Grothey A, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20, 898 patients on 18 randomized trials[J]. J Clin Oncol, 2009, 27(6): 872-877. |
| 7 | Copija A, Waniczek D, Witkoś A, et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients[J]. Int J Mol Sci, 2017, 18(1): E107. |
| 8 | Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence[J]. Nat Rev Clin Oncol, 2010, 7(3): 153-162. |
| 9 | Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer[J]. Cancer Res, 1998, 58(22): 5248-5257. |
| 10 | Cohen R, Svrcek M, Dreyer C, et al. New therapeutic opportunities based on DNA mismatch repair and BRAF status in metastatic colorectal cancer[J]. Curr Oncol Rep, 2016, 18(3): 18. |
| 11 | Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of lynch syndrome pan-cancer[J]. J Clin Oncol, 2019, 37(4): 286-295. |
| 12 | Søreide K, Nedrebø BS, Søreide JA, et al. Lymph node harvest in colon cancer: influence of microsatellite instability and proximal tumor location[J]. World J Surg, 2009, 33(12): 2695-2703. |
| 13 | Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases[J]. Br J Cancer, 2005, 92(9): 1746-1753. |
| 14 | Malesci A, Laghi L, Bianchi P, et al. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer[J]. Clin Cancer Res, 2007, 13(13): 3831-3839. |
| 15 | Kim CG, Ahn JB, Jung M, et al. Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers[J]. Br J Cancer, 2016, 115(1): 25-33. |
| 16 | Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies[J]. Clin Cancer Res, 2014, 20(20): 5322-5330. |
| 17 | Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer[J]. Curr Treat Options Oncol, 2015, 16(7): 30. |
| 18 | Colle R, Cohen R, Cochereau D, et al. Immunotherapy and patients treated for cancer with microsatellite instability[J]. Bull Cancer, 2017, 104(1): 42-51. |
| 19 | Liu Y, Sethi NS, Hinoue T, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas[J]. Cancer Cell, 2018, 33(4): 721-735.e8. |
| 20 | Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. |
| 21 | Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. |
| 22 | Wang SD, Yang L, Ci B, et al. Development and validation of a nomogram prognostic model for SCLC patients[J]. J Thorac Oncol, 2018, 13(9): 1338-1348. |
| 23 | Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer[J]. N Engl J Med, 2009, 361(25): 2449-2460. |
| 24 | Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis[J]. J Clin Oncol, 2005, 23(3): 609-618. |
| 25 | Koslowski M, Türeci O, Huber C, et al. Selective activation of tumor growth-promoting Ca2+channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2[J]. Mol Cancer, 2009, 8: 77. |
| 26 | Bie FL, Wang GH, Qu X, et al. Loss of FGL1 induces epithelial‑mesenchymal transition and angiogenesis in LKB1 mutant lung adenocarcinoma[J]. Int J Oncol, 2019, 55(3): 697-707. |
| 27 | Nayeb-Hashemi H, Desai A, Demchev V, et al. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development[J]. Biochem Biophys Res Commun, 2015, 465(2): 167-173. |
| 28 | Chai ZB, Wang L, Zheng YB, et al. PADI3 plays an antitumor role via the Hsp90/CKS1 pathway in colon cancer[J]. Cancer Cell Int, 2019, 19: 277. |
| 29 | Chang XT, Chai ZB, Zou JR, et al. PADI3 induces cell cycle arrest via the Sirt2/AKT/p21 pathway and acts as a tumor suppressor gene in colon cancer[J]. Cancer Biol Med, 2019, 16(4): 729-742. |
| 30 | Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies?[J]. Physiol Rev, 2018, 98(2): 559-621. |
| 31 | Lui VC, Lung SS, Pu JK, et al. Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3[J]. Anticancer Res, 2010, 30(11): 4515-4524. |
| 32 | Siveen KS, Raza A, Ahmed EI, et al. The role of extracellular vesicles as modulators of the tumor microenvironment, metastasis and drug resistance in colorectal cancer[J]. Cancers (Basel), 2019, 11(6): E746. |
| 33 | la Vecchia S, Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression[J]. Semin Cell Dev Biol, 2020, 98: 63-70. |
| 34 | Kasprzak A, Adamek A. The neuropeptide system and colorectal cancer liver metastases: mechanisms and management[J]. Int J Mol Sci, 2020, 21(10): 3494. |
| 35 | Qiu SY, Nikolaou S, Zhu J, et al. Characterisation of the expression of neurotensin and its receptors in human colorectal cancer and its clinical implications[J]. Biomolecules, 2020, 10(8): 1145. |
| 36 | Liu Y, He JJ, Xu JH, et al. Neuroendocrine differentiation is predictive of poor survival in patients with stage Ⅱ colorectal cancer[J]. Oncol Lett, 2017, 13(4): 2230-2236. |
| 37 | Yamamoto N, Oshima T, Yoshihara K, et al. Clinicopathological significance and impact on outcomes of the gene expression levels of IGF-1, IGF-2 and IGF-1R, IGFBP-3 in patients with colorectal cancer: overexpression of the IGFBP-3 gene is an effective predictor of outcomes in patients with colorectal cancer[J]. Oncol Lett, 2017, 13(5): 3958-3966. |
| 38 | Yang LS, Li JY, Fu SZ, et al. Up-regulation of insulin-like growth factor binding protein-3 is associated with brain metastasis in lung adenocarcinoma[J]. Mol Cells, 2019, 42(4): 321-332. |
| 39 | Loboda A, Nebozhyn MV, Watters JW, et al. EMT is the dominant program in human colon cancer[J]. BMC Med Genomics, 2011, 4: 9. |
| 40 | Schell MJ, Yang ML, Missiaglia E, et al. A composite gene expression signature optimizes prediction of colorectal cancer metastasis and outcome[J]. Clin Cancer Res, 2016, 22(3): 734-745. |
| [1] | LI Siyu, CHEN Ya, HU Wentao, DAI Yongming, WU Yingwei. Using diffusion-relaxation correlation spectroscopic imaging to assess the heterogeneity of head and neck tumors and identify occult lymph node metastasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1202-1213. |
| [2] | JIANG Yi, HUANG Chenhao, LI Zhiliang, WU Junwei, ZHAO Ren, ZHANG Tao. Effect of preoperative chemotherapy combined with immunotherapy in a colorectal cancer patient with KRAS mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1256-1260. |
| [3] | WU Lei, DU Fenglin, ZHAO Mingna, REN Yizhe, ZHANG Xianzhou, LOU Jiatao. Expression of PTPRN in lung adenocarcinoma and its mechanism of promoting tumor metastasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 846-857. |
| [4] | WANG Rui, YUAN Ying, TAO Xiaofeng. Application value of synthetic magnetic resonance imaging in predicting cervical lymph node metastasis of oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 900-909. |
| [5] | CHEN Rong, ZHANG Meng, ZHU Diqi, GUO Ying, SHEN Jie. Nomogram for predicting the risk of coronary artery lesions in patients with Kawasaki disease based on anti-neutrophil cytoplasmic antibodies [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 459-467. |
| [6] | LIU Chuxuan, ZUO Jiaxin, XIONG Ping. A nomogram based on ultrasound scoring parameters and clinical indicators for differentiating primary Sjὅgren′s syndrome from IgG4-related sialadenitis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 373-380. |
| [7] | LIANG Lebin, CHEN Huifang, LAI Shujing, GU liang, SU Bing. Analysis of epigenetic characteristics in colonic tumors of Apcmin/+via spatial ATAC-seq technology [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1261-1270. |
| [8] | YU Zhiyuan, DONG Haiping, GAO Nan, MA Ke. Identification and mechanistic analysis of core genes associated with morphine tolerance in dorsal root ganglion: an integrative transcriptomics approach using WGCNA and machine learning algorithms [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1308-1319. |
| [9] | DUN Yiting, ZHAO Jing, FENG Chengling, LI Xingjian, CUI Di, HAN Bangmin. Online risk calculator and nomogram prediction model for urinary incontinence after robot-assisted laparoscopic radical prostatectomy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1361-1371. |
| [10] | LU Jiaping, LIU Xing, ZHANG Linshan, ZHAO Lin, ZHANG Min, LI Xiaoying, LIU Yuejun. Relationship between abdominal fat area and first-phase insulin secretion function of pancreatic β-cells in patients with type 2 diabetes [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 42-50. |
| [11] | QIAN Liheng, WEN Kailing, LIAO Yingna, LI Shuxin, NIE Huizhen. Study on the effect and mechanism of sorting nexin 1 on inhibiting the proliferation and migration of colorectal cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1124-1135. |
| [12] | WEI Yunxin, JIANG Xushun, CAI Mengyao, WEN Ruizhi, DU Xiaogang. Correlation analysis of COMP and autophagy in diabetic nephropathy and its functional verification [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 847-858. |
| [13] | FENG Xujiao, LIU Jianyue, QI Yangyang, SUN Jing, SHEN Lei. Phenotype and function of NK cell in colorectal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 713-722. |
| [14] | WANG Xin, WANG Xiaoxia, LI Yanqing, ZHENG Yongxin, WU Jie, REN Meng, JIA Xiangdong, XU Tianxiang. Expression and clinical significance of geranylgeranyl diphosphate synthase1 (GGPS1) in lung squamous cell carcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 312-324. |
| [15] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||