JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (9): 1233-1239.doi: 10.3969/j.issn.1674-8115.2021.09.015
• Clinical research • Previous Articles
Jun-lin HE1,2(), Qing LU3, Xin XU4, Shu-dong HU5()
Received:
2021-01-18
Online:
2021-08-03
Published:
2021-08-03
Contact:
Shu-dong HU
E-mail:912211529@qq.com;hsd2001054@163.com
CLC Number:
Jun-lin HE, Qing LU, Xin XU, Shu-dong HU. Value of CT radiomic features in preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1233-1239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.09.015
Item | CLNM group (n=55) | Non-CLNM group (n=69) | t value | P value | Item | CLNM group (n=55) | Non-CLNM group (n=69) | t value | P value |
---|---|---|---|---|---|---|---|---|---|
Age/year | 52.8±12.8 | 48.3±13.5 | 0.139 | 0.063 | Isthmus | 3 (5.5) | 0 (0) | ||
Age group/n(%) | 4.051 | 0.044 | Right lobe | 22 (40.0) | 38 (55.1) | ||||
≥50 | 37 (67.3) | 34 (49.3) | Calcification/n(%) | 0.116 | 0.733 | ||||
<50 | 18 (32.7) | 35 (50.7) | Negative | 28 (50.9) | 33 (47.8) | ||||
Gender/n(%) | 0.304 | 0.581 | Positive | 27 (49.1) | 36 (52.2) | ||||
Male | 12 (21.8) | 18 (26.1) | Boundary①/n(%) | 1.125 | 0.289 | ||||
Female | 43 (78.2) | 51 (73.9) | Distinct | 12 (21.8) | 10 (14.5) | ||||
Shape/n(%) | 1.360 | 0.713 | Indistinct | 43 (78.2) | 59 (85.5) | ||||
Irregular | 43 (78.2) | 52 (75.4) | Capsule invasion/n(%) | 5.731 | 0.025 | ||||
Regular | 12 (21.8) | 17 (24.6) | Negative | 4 (7.3) | 16 (23.2) | ||||
Length to diameter/n(%) | 2.285 | 0.131 | Positive | 51 (92.7) | 53 (76.8) | ||||
≤1.0 | 26 (47.3) | 42 (60.9) | ETE/n(%) | 8.801 | 0.004 | ||||
>1.0 | 29 (52.7) | 27 (39.1) | Negative | 27 (49.1) | 51 (73.9) | ||||
Location/n(%) | 5.776 | 0.056 | Positive | 28 (50.9) | 18 (26.1) | ||||
Left lobe | 30 (54.5) | 31 (44.9) |
Tab1 Baseline and clinical information of PTC patients(N=124)
Item | CLNM group (n=55) | Non-CLNM group (n=69) | t value | P value | Item | CLNM group (n=55) | Non-CLNM group (n=69) | t value | P value |
---|---|---|---|---|---|---|---|---|---|
Age/year | 52.8±12.8 | 48.3±13.5 | 0.139 | 0.063 | Isthmus | 3 (5.5) | 0 (0) | ||
Age group/n(%) | 4.051 | 0.044 | Right lobe | 22 (40.0) | 38 (55.1) | ||||
≥50 | 37 (67.3) | 34 (49.3) | Calcification/n(%) | 0.116 | 0.733 | ||||
<50 | 18 (32.7) | 35 (50.7) | Negative | 28 (50.9) | 33 (47.8) | ||||
Gender/n(%) | 0.304 | 0.581 | Positive | 27 (49.1) | 36 (52.2) | ||||
Male | 12 (21.8) | 18 (26.1) | Boundary①/n(%) | 1.125 | 0.289 | ||||
Female | 43 (78.2) | 51 (73.9) | Distinct | 12 (21.8) | 10 (14.5) | ||||
Shape/n(%) | 1.360 | 0.713 | Indistinct | 43 (78.2) | 59 (85.5) | ||||
Irregular | 43 (78.2) | 52 (75.4) | Capsule invasion/n(%) | 5.731 | 0.025 | ||||
Regular | 12 (21.8) | 17 (24.6) | Negative | 4 (7.3) | 16 (23.2) | ||||
Length to diameter/n(%) | 2.285 | 0.131 | Positive | 51 (92.7) | 53 (76.8) | ||||
≤1.0 | 26 (47.3) | 42 (60.9) | ETE/n(%) | 8.801 | 0.004 | ||||
>1.0 | 29 (52.7) | 27 (39.1) | Negative | 27 (49.1) | 51 (73.9) | ||||
Location/n(%) | 5.776 | 0.056 | Positive | 28 (50.9) | 18 (26.1) | ||||
Left lobe | 30 (54.5) | 31 (44.9) |
Fig 2 10-fold ROC curve of the maximum AUC in RF classification models of the pre-contrast phase (A), arterial phase (B) and venous phase (C) of patients with PTC
Iteration | Training set | Validation set | Pre-contrast phase [top(k)=56] | Arterial phase [top(k)=94] | Venous phase [top(k)=47] | |||
---|---|---|---|---|---|---|---|---|
Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |||
1 | 111 | 13 | 0.846 | 0.810 | 0.615 | 0.690 | 0.846 | 0.857 |
2 | 111 | 13 | 0.846 | 0.833 | 0.692 | 0.800 | 0.692 | 0.817 |
3 | 111 | 13 | 0.538 | 0.762 | 0.615 | 0.476 | 0.615 | 0.595 |
4 | 111 | 13 | 0.769 | 0.925 | 0.692 | 0.800 | 0.692 | 0.950 |
5 | 111 | 13 | 0.917 | 0.972 | 0.750 | 0.861 | 1.000 | 1.000 |
6 | 111 | 13 | 0.583 | 0.812 | 0.583 | 0.969 | 0.500 | 0.469 |
7 | 111 | 13 | 0.833 | 0.815 | 0.833 | 0.889 | 0.750 | 0.852 |
8 | 111 | 13 | 0.750 | 0.829 | 0.667 | 0.714 | 0.750 | 0.771 |
9 | 111 | 13 | 0.833 | 0.914 | 0.750 | 0.771 | 0.667 | 0.743 |
10 | 111 | 13 | 0.750 | 0.704 | 0.750 | 0.778 | 0.750 | 0.778 |
Average AUC | ‒ | ‒ | 0.767 | 0.843 | 0.695 | 0.775 | 0.726 | 0.783 |
Tab 2 Results of 10-fold cross-validation of RF classification model in pre-contrast phase,arterial phase and venous phase of patients with PTC
Iteration | Training set | Validation set | Pre-contrast phase [top(k)=56] | Arterial phase [top(k)=94] | Venous phase [top(k)=47] | |||
---|---|---|---|---|---|---|---|---|
Accuracy | AUC | Accuracy | AUC | Accuracy | AUC | |||
1 | 111 | 13 | 0.846 | 0.810 | 0.615 | 0.690 | 0.846 | 0.857 |
2 | 111 | 13 | 0.846 | 0.833 | 0.692 | 0.800 | 0.692 | 0.817 |
3 | 111 | 13 | 0.538 | 0.762 | 0.615 | 0.476 | 0.615 | 0.595 |
4 | 111 | 13 | 0.769 | 0.925 | 0.692 | 0.800 | 0.692 | 0.950 |
5 | 111 | 13 | 0.917 | 0.972 | 0.750 | 0.861 | 1.000 | 1.000 |
6 | 111 | 13 | 0.583 | 0.812 | 0.583 | 0.969 | 0.500 | 0.469 |
7 | 111 | 13 | 0.833 | 0.815 | 0.833 | 0.889 | 0.750 | 0.852 |
8 | 111 | 13 | 0.750 | 0.829 | 0.667 | 0.714 | 0.750 | 0.771 |
9 | 111 | 13 | 0.833 | 0.914 | 0.750 | 0.771 | 0.667 | 0.743 |
10 | 111 | 13 | 0.750 | 0.704 | 0.750 | 0.778 | 0.750 | 0.778 |
Average AUC | ‒ | ‒ | 0.767 | 0.843 | 0.695 | 0.775 | 0.726 | 0.783 |
Order | Pre-contrast phase | Arterial phase | Venous phase |
---|---|---|---|
1 | Original_glcm_DifferenceAverage | Original_glcm_DifferenceVariance | Original_glcm_DifferenceVariance |
2 | Original_firstorder_Variance | Original_glcm_ClusterProminence | Original_glcm_Contrast |
3 | Original_glrlm_RunPercentage | Original_glcm_Contrast | Original_glrlm_ShortRunEmphasis |
4 | Original_glszm_GrayLevelNonUniformityNormalized | Original_firstorder_Kurtosis | Original_glszm_SmallAreaLowGrayLevelEmphasis |
5 | Original_glcm_SumSquares | Original_glcm_ClusterShade | Original_glcm_ClusterProminence |
6 | Original_glcm_JointEntropy | Original_shape_Maximum3DDiameter | Original_glrlm_RunVariance |
7 | Original_glcm_SumAverage | Original_glrlm_GrayLevelVariance | Original_firstorder_Skewness |
8 | Original_glcm_Contrast | Original_gldm_DependenceVariance | Original_glcm_MaximumProbability |
9 | Original_ngtdm_Strength | Original_glcm_SumSquares | Original_glcm_DifferenceAverage |
10 | Original_gldm_DependenceNonUniformityNormalized | Original_glcm_DifferenceEntropy | Original_glcm_ClusterShade |
Tab 3 Top 10 radiomic features in RF classification model of pre-contrast, arterial and venous phase of PTC patients(N=124)
Order | Pre-contrast phase | Arterial phase | Venous phase |
---|---|---|---|
1 | Original_glcm_DifferenceAverage | Original_glcm_DifferenceVariance | Original_glcm_DifferenceVariance |
2 | Original_firstorder_Variance | Original_glcm_ClusterProminence | Original_glcm_Contrast |
3 | Original_glrlm_RunPercentage | Original_glcm_Contrast | Original_glrlm_ShortRunEmphasis |
4 | Original_glszm_GrayLevelNonUniformityNormalized | Original_firstorder_Kurtosis | Original_glszm_SmallAreaLowGrayLevelEmphasis |
5 | Original_glcm_SumSquares | Original_glcm_ClusterShade | Original_glcm_ClusterProminence |
6 | Original_glcm_JointEntropy | Original_shape_Maximum3DDiameter | Original_glrlm_RunVariance |
7 | Original_glcm_SumAverage | Original_glrlm_GrayLevelVariance | Original_firstorder_Skewness |
8 | Original_glcm_Contrast | Original_gldm_DependenceVariance | Original_glcm_MaximumProbability |
9 | Original_ngtdm_Strength | Original_glcm_SumSquares | Original_glcm_DifferenceAverage |
10 | Original_gldm_DependenceNonUniformityNormalized | Original_glcm_DifferenceEntropy | Original_glcm_ClusterShade |
1 | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. |
2 | Vaccarella S, Franceschi S, Bray F, et al. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis[J]. N Engl J Med, 2016, 375(7): 614-617. |
3 | Londero SC, Krogdahl A, Bastholt L, et al. Papillary thyroid carcinoma in Denmark, 1996‒2008: outcome and evaluation of established prognostic scoring systems in a prospective national cohort[J]. Thyroid, 2015, 25(1): 78-84. |
4 | Lee YK, Kim D, Shin DY, et al. The prognosis of papillary thyroid cancer with initial distant metastasis is strongly associated with extensive extrathyroidal extension: a retrospective cohort study[J]. Ann Surg Oncol, 2019, 26(7): 2200-2209. |
5 | Mulla M, Schulte KM. Central cervical lymph node metastases in papillary thyroid cancer: a systematic review of imaging-guided and prophylactic removal of the central compartment[J]. Clin Endocrinol (Oxf), 2012, 76(1): 131-136. |
6 | Hall CM, Snyder SK, Lairmore TC. Central lymph node dissection improves lymph node clearance in papillary thyroid cancer patients with lateral neck metastases, even after prior total thyroidectomy[J]. Am Surg, 2018, 84(4): 531-536. |
7 | Mulla M, Schulte KM. The accuracy of ultrasonography in the preoperative diagnosis of cervical lymph node (LN) metastasis in patients with papillary thyroid carcinoma: a meta-analysis[J]. Eur J Radiol, 2012, 81(8): 1965. |
8 | Suh CH, Baek JH, Choi YJ, et al. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: a systematic review and meta-analysis[J]. AJNR Am J Neuroradiol, 2017, 38(1): 154-161. |
9 | Gross ND, Weissman JL, Talbot JM, et al. MRI detection of cervical metastasis from differentiated thyroid carcinoma[J]. Laryngoscope, 2001, 111(11Pt 1): 1905-1909. |
10 | Chen QH, Raghavan P, Mukherjee S, et al. Accuracy of MRI for the diagnosis of metastatic cervical lymphadenopathy in patients with thyroid cancer[J]. La Radiol Med, 2015, 120(10): 959-966. |
11 | Paek SH, Yi KH, Kim SJ, et al. Feasibility of sentinel lymph node dissection using Tc-99m phytate in papillary thyroid carcinoma[J]. Ann Surg Treat Res, 2017, 93(5): 240-245. |
12 | Suh CH, Choi YJ, Lee JJ, et al. Comparison of core-needle biopsy and fine-needle aspiration for evaluating thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography/computed tomography: a propensity score analysis[J]. Thyroid, 2017, 27(10): 1258-1266. |
13 | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. |
14 | van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107. |
15 | Barry WT, Kernagis DN, Dressman HK, et al. Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome[J]. J Clin Oncol, 2010, 28(13): 2198-2206. |
16 | Gambardella C, Patrone R, di Capua F, et al. The role of prophylactic central compartment lymph node dissection in elderly patients with differentiated thyroid cancer: a multicentric study[J]. BMC Surg, 2019, 18(): 110. |
17 | Lu W, Zhong LZ, Dong D, et al. Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma[J]. Eur J Radiol, 2019, 118: 231-238. |
18 | Liu TT, Zhou SC, Yu JH, et al. Prediction of lymph node metastasis in patients with papillary thyroid carcinoma: a radiomics method based on preoperative ultrasound images[J]. Technol Cancer Res Treat, 2019, 18: 1533033819831713. |
19 | O′Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome[J]. Clin Cancer Res, 2015, 21(2): 249-257. |
20 | 徐天伟. 基于灰度共生矩阵的医学PET图像纹理分析研究[J]. 电脑知识与技术, 2017, 13(5): 219-220. |
21 | 颜智敏, 冯智超, 曹鹏, 等. 多层螺旋CT图像纹理分析对直肠癌转移性淋巴结的诊断价值[J]. 中华放射学杂志, 2017, 51(6): 432-436. |
22 | El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes[J]. Pattern Recognit, 2009, 42(6): 1162-1171. |
23 | 梁子超, 李智炜, 赖铿, 等. 10折交叉验证用于预测模型泛化能力评价及其R软件实现[J]. 中国医院统计, 2020, 27(4): 289-292. |
24 | Rodríguez JD, Pérez A, Lozano JA. Sensitivity analysis of kappa-fold cross validation in prediction error estimation[J]. IEEE Trans Pattern Anal Mach Intell, 2010, 32(3): 569-575. |
25 | Johnstone IM, Titterington DM. Statistical challenges of high-dimensional data[J]. Philos Trans A Math Phys Eng Sci, 2009, 367(1906): 4237-4253. |
26 | Clarke R, Ressom HW, Wang A, et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data[J]. Nat Rev Cancer, 2008, 8(1): 37-49. |
[1] | Ying XU, Yi-min CHU, Da-ming YANG, Ji LI, Hai-qin ZHANG, Hai-xia PENG. Construction of a metastasis prediction model of microsatellite instability-high colorectal cancer based on differentially expressed gene assembly [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1197-1206. |
[2] | Jun-jun ZHOU, Jie ZHAO, Jing-yan TANG, Ma-wei JIANG, Xiu-mei MA, Yong-rui BAI. Analysis of prognostic factors of radiotherapy in children with Ⅲ-Ⅳ neuroblastoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1051-1055. |
[3] | Sheng CHENG, Yi ZHAO, Yong-chen WANG, Ping HUANG. Meta-analysis of the effect of BRAF gene mutation on the prognosis of colorectal cancer patients with liver metastases after hepatectomy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 786-792. |
[4] | Jia-ling ZHANG, Feng-chun ZHANG, Ying-chun XU. Research progress in the systemic treatment for breast cancer with brain metastasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 671-677. |
[5] | Meng-ke LIU, Meng-meng JI, Lin CHENG, Jin-yan HUANG, Xiao-jian SUN, Wei-li ZHAO, Li WANG. Research progress in anti-tumor effect and mechanism of baicalin [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 246-250. |
[6] | HE Qin, ZHANG Wei-bin, SHEN Yu-hui. Establishment of a prognostic scoring model for the breast cancer patients with spinal metastasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(09): 1243-1248. |
[7] | XU Zhong-yun, WU Shu-qi, WANG Shao-yan, WANG Dan-yang, FU Hong-liang. Curative efficacy and influencing factors of 131I treatment for pulmonary metastases differentiated thyroid carcinoma [J]. , 2019, 39(4): 412-. |
[8] | DING Wen-jing1, WU Hui1, FAN Rong1, XU Min2, QIU Xiao-chun1. New advances in translational medicine research in the field of tumor [J]. , 2018, 38(9): 1133-. |
[9] | PAN Xian-jun1,HU Dai-xing2,SU Xin-liang2 . Clinical value of central lymph node dissection and intraoperative frozen-section examination in the treatment of papillary thyroid microcarcinoma [J]. , 2018, 38(2): 180-. |
[10] | DING Xiao-kai, FU Yin-kun, MAN MOHAN. DOT1L-long enhances breast cancer metastasis#br# [J]. , 2017, 37(10): 1327-. |
[11] | XU Xin, MA Xiu-mei, ZHOU Di, BAI Yong-rui . Effects of the status of lymph nodes metastasis on the prognosis of postoperative radiotherapy for patients with locally advanced esophageal squamous cell carcinoma#br# [J]. , 2017, 37(10): 1407-. |
[12] | ZHU Li-min, SHEN Ke-ping . Research progress of traditional Chinese medicine in the intervention of colorectal cancer stem cells [J]. , 2017, 37(02): 258-. |
[13] | WU Qiang-qiang, ZU Li-dong. Research advances on the molecular mechanism of influencing the progression of gastric cancer by miR-146a [J]. , 2016, 36(11): 1668-. |
[14] | PAN Tao, YU Zhen-jia, WU Xiong-yan, SU Li-ping. Research progresses of regulating the invasion and metastasis of gastric cancer by long non-coding RNA [J]. , 2016, 36(09): 1388-. |
[15] | XU Ling, XIA Li-liang, SONG Fei-fei, et al. Expression and distribution of dCTP pyrophosphatase 1 in gastric cancer tissues and its clinical relevance [J]. , 2016, 36(02): 172-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||