
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (10): 1490-1497.doi: 10.3969/j.issn.1674-8115.2022.10.016
• Review • Previous Articles Next Articles
JIANG Yi1(
), JIANG Ping2, ZHANG Mingming1, FANG Jingyuan1(
)
Received:2022-05-07
Accepted:2022-08-28
Online:2022-10-28
Published:2022-10-17
Contact:
FANG Jingyuan
E-mail:jiangyi1501@163.com;jingyuanfang@sjtu.edu.cn
Supported by:CLC Number:
JIANG Yi, JIANG Ping, ZHANG Mingming, FANG Jingyuan. Research progress in the role of Akkermansia muciniphila in gut-related diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1490-1497.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.10.016
| Disease | Mouse model | Determinant | Effect (+/-) |
|---|---|---|---|
| Colitis | DSS induced colitis | Bacteria | -/+[ |
| AmEV | -[ | ||
| Amuc_1100 | -[ | ||
| Colitis | Salmonella typhimurium-infected colitis | Bacteria | +[ |
| Colitis | Il10-/- mice spontaneous colitis | Bacteria | +[ |
| CAC | AOM/DSS induced CAC | Amuc_1100 | -[ |
| CRC | ApcMin/+ mice spontaneous CRC | Bacteria | -[ |
| CRC | HCT116/CT26 subcutaneously transplantation tumor | Bacteria | -[ |
| ALD | Alcohol induced ALD | Bacteria | -[ |
| Liver injury | ConA induced liver injury | Bacteria | -[ |
| Obesity/T2DM | High-fat diet induced obesity/T2DM | Bacteria | -[ |
| Amuc_1100 | -[ |
Tab 1 Effect of A. muciniphila and its components or secretion on different diseases
| Disease | Mouse model | Determinant | Effect (+/-) |
|---|---|---|---|
| Colitis | DSS induced colitis | Bacteria | -/+[ |
| AmEV | -[ | ||
| Amuc_1100 | -[ | ||
| Colitis | Salmonella typhimurium-infected colitis | Bacteria | +[ |
| Colitis | Il10-/- mice spontaneous colitis | Bacteria | +[ |
| CAC | AOM/DSS induced CAC | Amuc_1100 | -[ |
| CRC | ApcMin/+ mice spontaneous CRC | Bacteria | -[ |
| CRC | HCT116/CT26 subcutaneously transplantation tumor | Bacteria | -[ |
| ALD | Alcohol induced ALD | Bacteria | -[ |
| Liver injury | ConA induced liver injury | Bacteria | -[ |
| Obesity/T2DM | High-fat diet induced obesity/T2DM | Bacteria | -[ |
| Amuc_1100 | -[ |
| 1 | LYNCH S V, PEDERSEN O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375(24): 2369-2379. |
| 2 | JAKOBSSON H E, ABRAHAMSSON T R, JENMALM M C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section[J]. Gut, 2014, 63(4): 559-566. |
| 3 | DERRIEN M, COLLADO M C, BEN-AMOR K, et al. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract[J]. Appl Environ Microbiol, 2008, 74(5): 1646-1648. |
| 4 | DERRIEN M, VAUGHAN E E, PLUGGE C M, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. Int J Syst Evol Microbiol, 2004, 54(Pt 5): 1469-1476. |
| 5 | HOLD G L, PRYDE S E, RUSSELL V J, et al. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis[J]. FEMS Microbiol Ecol, 2002, 39(1): 33-39. |
| 6 | SALZMAN N H, DE JONG H, PATERSON Y, et al. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria[J]. Microbiology (Reading), 2002, 148(Pt 11): 3651-3660. |
| 7 | DERRIEN M, VAN PASSEL M W, VAN DE BOVENKAMP J H, et al. Mucin-bacterial interactions in the human oral cavity and digestive tract[J]. Gut Microbes, 2010, 1(4): 254-268. |
| 8 | COLLADO M C, DERRIEN M, ISOLAURI E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly[J]. Appl Environ Microbiol, 2007, 73(23): 7767-7770. |
| 9 | COLLADO M C, ISOLAURI E, LAITINEN K, et al. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women[J]. Am J Clin Nutr, 2008, 88(4): 894-899. |
| 10 | SONOYAMA K, FUJIWARA R, TAKEMURA N, et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters[J]. Appl Environ Microbiol, 2009, 75(20): 6451-6456. |
| 11 | BELZER C, DE VOS W M. Microbes inside: from diversity to function: the case of Akkermansia[J]. ISME J, 2012, 6(8): 1449-1458. |
| 12 | VAN PASSEL M W J, KANT R, ZOETENDAL E G, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes[J]. PLoS One, 2011, 6(3): e16876. |
| 13 | BAJER L, KVERKA M, KOSTOVCIK M, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis[J]. World J Gastroenterol, 2017, 23(25): 4548-4558. |
| 14 | EARLEY H, LENNON G, BALFE Á, et al. The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis[J]. Sci Rep, 2019, 9(1): 15683. |
| 15 | KUMP P, WURM P, GRÖCHENIG H P, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis[J]. Aliment Pharmacol Ther, 2018, 47(1): 67-77. |
| 16 | PNG C W, LINDÉN S K, GILSHENAN K S, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria[J]. Am J Gastroenterol, 2010, 105(11): 2420-2428. |
| 17 | BIAN X Y, WU W R, YANG L Y, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice[J]. Front Microbiol, 2019, 10: 2259. |
| 18 | KANG C S, BAN M, CHOI E J, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis[J]. PLoS One, 2013, 8(10): e76520. |
| 19 | WANG L J, TANG L, FENG Y M, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11): 1988-1997. |
| 20 | HÅKANSSON Å, TORMO-BADIA N, BARIDI A, et al. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice[J]. Clin Exp Med, 2015, 15(1): 107-120. |
| 21 | CASTRO-MEJÍA J, JAKESEVIC M, KRYCH Ł, et al. Treatment with a monoclonal anti-IL-12p40 antibody induces substantial gut microbiota changes in an experimental colitis model[J]. Gastroenterol Res Pract, 2016, 2016: 4953120. |
| 22 | GANESH B P, KLOPFLEISCH R, LOH G, et al. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice[J]. PLoS One, 2013, 8(9): e74963. |
| 23 | SEREGIN S S, GOLOVCHENKO N, SCHAF B, et al. NLRP6 protects Il10 -/- mice from colitis by limiting colonization of Akkermansia muciniphila[J]. Cell Rep, 2017, 19(4): 733-745. |
| 24 | BAE M, CASSILLY C D, LIU X, et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses[J]. Nature, 2022, 608(7921): 168-173. |
| 25 | FAN L N, XU C C, GE Q W, et al. A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs[J]. Cancer Immunol Res, 2021, 9(10): 1111-1124. |
| 26 | COLLINS D, HOGAN A M, WINTER D C. Microbial and viral pathogens in colorectal cancer[J]. Lancet Oncol, 2011, 12(5): 504-512. |
| 27 | ROUTY B, LE CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. |
| 28 | HOU X Y, ZHANG P, DU H Z, et al. Akkermansia muciniphila potentiates the antitumor efficacy of FOLFOX in colon cancer[J]. Front Pharmacol, 2021, 12: 725583. |
| 29 | MILOSEVIC I, VUJOVIC A, BARAC A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci, 2019, 20(2): 395. |
| 30 | GRANDER C, ADOLPH T E, WIESER V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease[J]. Gut, 2018, 67(5): 891-901. |
| 31 | WU W R, LV L X, SHI D, et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model[J]. Front Microbiol, 2017, 8: 1804. |
| 32 | FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. |
| 33 | EVERARD A, BELZER C, GEURTS L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proc Natl Acad Sci USA, 2013, 110(22): 9066-9071. |
| 34 | SANTACRUZ A, COLLADO M C, GARCÍA-VALDÉS L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women[J]. Br J Nutr, 2010, 104(1): 83-92. |
| 35 | KARLSSON C L J, ONNERFÄLT J, XU J, et al. The microbiota of the gut in preschool children with normal and excessive body weight[J]. Obesity (Silver Spring), 2012, 20(11): 2257-2261. |
| 36 | ZHANG X Y, SHEN D Q, FANG Z W, et al. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One, 2013, 8(8): e71108. |
| 37 | CHELAKKOT C, CHOI Y, KIM D K, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J]. Exp Mol Med, 2018, 50(2): e450. |
| 38 | DAO M C, EVERARD A, ARON-WISNEWSKY J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436. |
| 39 | PLOVIER H, EVERARD A, DRUART C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nat Med, 2017, 23(1): 107-113. |
| 40 | LEE H, KO G. Effect of metformin on metabolic improvement and gut microbiota[J]. Appl Environ Microbiol, 2014, 80(19): 5935-5943. |
| 41 | SHIN N R, LEE J C, LEE H Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63(5): 727-735. |
| 42 | LI J, LIN S Q, VANHOUTTE P M, et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe -/- mice[J]. Circulation, 2016, 133(24): 2434-2446. |
| 43 | ZHU L D, LU X X, LIU L, et al. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium[J]. Vet Res, 2020, 51(1): 34. |
| 44 | REUNANEN J, KAINULAINEN V, HUUSKONEN L, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Appl Environ Microbiol, 2015, 81(11): 3655-3662. |
| 45 | ALAM A, LEONI G, QUIROS M, et al. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota[J]. Nat Microbiol, 2016, 1: 15021. |
| 46 | GREGORIEFF A, PINTO D, BEGTHEL H, et al. Expression pattern of Wnt signaling components in the adult intestine[J]. Gastroenterology, 2005, 129(2): 626-638. |
| 47 | DERRIEN M, VAN BAARLEN P, HOOIVELD G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila[J]. Front Microbiol, 2011, 2: 166. |
| 48 | ANSALDO E, SLAYDEN L C, CHING K L, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis[J]. Science, 2019, 364(6446): 1179-1184. |
| 49 | MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286. |
| 50 | KIM M, FRIESEN L, PARK J, et al. Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice[J]. Eur J Immunol, 2018, 48(7): 1235-1247. |
| 51 | MENG X, ZHANG J R, WU H, et al. Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway[J]. Int J Mol Sci, 2020, 21(9): 3385. |
| 52 | CARIO E, GERKEN G, PODOLSKY D K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function[J]. Gastroenterology, 2007, 132(4): 1359-1374. |
| [1] | LI Siyu, CHEN Ya, HU Wentao, DAI Yongming, WU Yingwei. Using diffusion-relaxation correlation spectroscopic imaging to assess the heterogeneity of head and neck tumors and identify occult lymph node metastasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1202-1213. |
| [2] | WANG Rui, YUAN Ying, TAO Xiaofeng. Application value of synthetic magnetic resonance imaging in predicting cervical lymph node metastasis of oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 900-909. |
| [3] | KERANMU Saitierguli, QIAN Lei, DING Siyi, MAHELIMUHAN Hanati, YANG Xueer, JIA Hao. Research progress of arginine metabolism in the regulation of mesenchymal stem cell function [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 910-915. |
| [4] | ZHAO Xinyu, ZHANG Wenchao, CHEN Xuzhuo, SONG Jiaqi, HUANG Hui, ZHANG Shanyong. Study on the effects of spermidine on LPS-induced inflammatory osteolysis in mouse calvaria [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 673-683. |
| [5] | YANG Le, ZHOU Yi, WANG Keyun, LAI Yali. Research on the improvement of cognitive impairment, endoplasmic reticulum stress and neuroinflammation in Alzheimer's disease by emodin [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 727-734. |
| [6] | TANG Kairan, FENG Chengling, HAN Bangmin. Integrated single-cell and transcriptome sequencing to construct a prognostic model of M2 macrophage-related genes in prostate cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 549-561. |
| [7] | YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638. |
| [8] | WAN Hongjin, HU Yibin, WANG Xin, ZHANG Kai, QIN An, MA Peixiang, MA Hui, ZHAO Jie. Neferine alleviates intervertebral disc degeneration through KEAP1/NRF2/GPX4 and NF-κB signaling pathways [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 261-270. |
| [9] | ZHANG Boyuan, YAO Zhirong. Current research on UV-induced DNA damage and its role in promoting the development of skin malignancies [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 228-232. |
| [10] | WU Shiyi, CHEN Si, LIU Bohan, LIU Yuting, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GUO Qian, GAO Feng, YANG Cuixia. Role of "HA coat" in modulating stemness and endocrine resistance in ER+ breast cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1298-1307. |
| [11] | PANDIT Roshan, LU Junyao, HE Liheng, BAO Yujie, JI Ping, CHEN Yingying, XU Jie, WANG Ying. Role of tumor necrosis factor-α in coronavirus disease 2019-associated kidney injury [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 1-10. |
| [12] | WANG Xiaohong, FANG Yiru. Research progress on the neuroinflammation mechanisms in bipolar disorder [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 107-112. |
| [13] | MA Meili, TENG Jiajun, GAO Zhiqiang, SHI Chunlei, ZHONG Hua, HAN Baohui. Clinical and imaging analyses of primary mediastinal yolk sac tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1155-1161. |
| [14] | HU Fei, CAI Xiaohan, CHENG Rui, JI Shiyu, MIAO Jiaxin, ZHU Yan, FAN Guangjian. Progress in translational research on immunotherapy for osteosarcoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 814-821. |
| [15] | CHEN Minghao, LIU Peiyu, WANG Xuan, WU Yixiang, JIANG Yujin, ZHANG Chaoyang, ZHANG Jingfa. Advances in drug therapy of diabetic retinopathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 822-829. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||