1 |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
|
2 |
GROSSBERG A J, CHU L C, DEIG C R, et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma[J]. CA Cancer J Clin, 2020, 70(5): 375-403.
|
3 |
LIEBIG C, AYALA G, WILKS J A, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009, 115(15): 3379-3391.
|
4 |
STOPCZYNSKI R E, NORMOLLE D P, HARTMAN D J, et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma[J]. Cancer Res, 2014, 74(6): 1718-1727.
|
5 |
DEMIR I E, CEYHAN G O, LIEBL F, et al. Neural invasion in pancreatic cancer: the past, present and future[J]. Cancers, 2010, 2(3): 1513-1527.
|
6 |
NAKAO A, HARADA A, NONAMI T, et al. Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer[J]. Pancreas, 1996, 12(4): 357-361.
|
7 |
SCHORN S, DEMIR I E, HALLER B, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis[J]. Surg Oncol, 2017, 26(1): 105-115.
|
8 |
LIANG D K, SHI S, XU J, et al. New insights into perineural invasion of pancreatic cancer: more than pain[J]. Biochim Biophys Acta BBA Rev Cancer, 2016, 1865(2): 111-122.
|
9 |
AMIT M, NA'ARA S, GIL Z. Mechanisms of cancer dissemination along nerves[J]. Nat Rev Cancer, 2016, 16(6): 399-408.
|
10 |
MU W, WANG Z, ZÖLLER M. Ping-pong-tumor and host in pancreatic cancer progression[J]. Front Oncol, 2019, 9: 1359.
|
11 |
NA'ARA S, AMIT M, GIL Z. L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression[J]. Oncogene, 2019, 38(4): 596-608.
|
12 |
BAKST R L, XIONG H Z, CHEN C H, et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression[J]. Cancer Res, 2017, 77(22): 6400-6414.
|
13 |
DEBORDE S, WONG R J. How Schwann cells facilitate cancer progression in nerves[J]. Cell Mol Life Sci, 2017, 74(24): 4405-4420.
|
14 |
BRESSY C, LAC S, NIGRI J, et al. LIF drives neural remodeling in pancreatic cancer and offers a new candidate biomarker[J]. Cancer Res, 2018, 78(4): 909-921.
|
15 |
ZENG L J, GUO Y B, LIANG J Z, et al. Perineural invasion and TAMs in pancreatic ductal adenocarcinomas: review of the original pathology reports using immunohistochemical enhancement and relationships with clinicopathological features[J]. J Cancer, 2014, 5(9): 754-760.
|
16 |
ARIMA K, KOMOHARA Y, BU L K, et al. Downregulation of 15-hydroxyprostaglandin dehydrogenase by interleukin-1β from activated macrophages leads to poor prognosis in pancreatic cancer[J]. Cancer Sci, 2018, 109(2): 462-470.
|
17 |
CAVEL O, SHOMRON O, SHABTAY A, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor[J]. Cancer Res, 2012, 72(22): 5733-5743.
|
18 |
HUANG C M, LI Y Q, GUO Y B, et al. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells[J]. Theranostics, 2018, 8(11): 3074-3086.
|
19 |
VONLAUFEN A, JOSHI S, QU C F, et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells[J]. Cancer Res, 2008, 68(7): 2085-2093.
|
20 |
LI X Q, LIU H, XU Q H, et al. P-0095 sonic hedgehog paracrine signaling activates pancreatic stellate cells to promote the perineural invasion of pancreatic cancer in vivo[J]. Ann Oncol, 2012, 23: iv58-iv59.
|
21 |
FUJITA H, OHUCHIDA K, MIZUMOTO K, et al. Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells[J]. Cancer Sci, 2009, 100(12): 2309-2317.
|
22 |
DE SIMONE R, AMBROSINI E, CARNEVALE D, et al. NGF promotes microglial migration through the activation of its high affinity receptor: modulation by TGF-β[J]. J Neuroimmunol, 2007, 190(1/2): 53-60.
|
23 |
YANG M W, TAO L Y, JIANG Y S, et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2020, 80(10): 1991-2003.
|
24 |
DANG C X, ZHANG Y, MA Q Y, et al. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer[J]. J Gastroenterol Hepatol, 2006, 21(5): 850-858.
|
25 |
DEMIR I E, CEYHAN G O, RAUCH U, et al. The microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal plasticity[J]. Neurogastroenterol Motil, 2010, 22(4): 480-490, e112-e113.
|
26 |
KONDO N, MURAKAMI Y, UEMURA K, et al. Su1826 increased number of perineural invasion is independently associated with poor survival of patients with resectable pancreatic cancer[J]. Gastroenterology, 2014, 146(5): S-1046.
|
27 |
FUJII-NISHIMURA Y, YAMAZAKI K, MASUGI Y, et al. Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells[J]. Pathol Int, 2018, 68(4): 214-223.
|
28 |
TANAKA M, MIHALJEVIC A L, PROBST P, et al. Meta-analysis of recurrence pattern after resection for pancreatic cancer[J]. Br J Surg, 2019, 106(12): 1590-1601.
|
29 |
ALBANESE C, ALZANI R, AMBOLDI N, et al. Dual targeting of CDK and tropomyosin receptor kinase families by the oral inhibitor PHA-848125, an agent with broad-spectrum antitumor efficacy[J]. Mol Cancer Ther, 2010, 9(8): 2243-2254.
|