
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (6): 825-832.doi: 10.3969/j.issn.1674-8115.2022.06.019
• Review • Previous Articles Next Articles
Received:2022-03-02
Accepted:2022-06-01
Online:2022-06-28
Published:2022-08-19
Contact:
MA Jiao
E-mail:zhengshifan@sjtu.edu.cn;drjiaoma@shsmu.edu.cn
Supported by:CLC Number:
ZHENG Shifan, MA Jiao. Research progress in the role of cancer stem cell metabolism in tumor development[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 825-832.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.06.019
| 1 | KRESO A, DICK J E. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3): 275-291. |
| 2 | LAPIDOT T, SIRARD C, VORMOOR J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. |
| 3 | BONNET D, DICK J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737. |
| 4 | AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988. |
| 5 | LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217. |
| 6 | O'BRIEN C A, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110. |
| 7 | LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037. |
| 8 | KIM C F, JACKSON E L, WOOLFENDEN A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6): 823-835. |
| 9 | MA S, CHAN K W, HU L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology, 2007, 132(7): 2542-2556. |
| 10 | HURT E M, KAWASAKI B T, KLARMANN G J, et al. CD44+ CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis[J]. Br J Cancer, 2008, 98(4): 756-765. |
| 11 | BATLLE E, CLEVERS H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134. |
| 12 | PRAGER B C, BHARGAVA S, MAHADEV V, et al. Glioblastoma stem cells: driving resilience through chaos[J]. Trends cancer, 2020, 6(3): 223-235. |
| 13 | POLLYEA D A, JORDAN C T. Therapeutic targeting of acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1627-1635. |
| 14 | YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 8. |
| 15 | TOH T B, LIM J J, CHOW E K. Epigenetics in cancer stem cells[J]. Mol Cancer, 2017, 16(1): 29. |
| 16 | WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. |
| 17 | PENG F, WANG J H, FAN W J, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia[J]. Oncogene, 2018, 37(8): 1062-1074. |
| 18 | HUR W, RYU J Y, KIM H U, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133[J]. Sci Rep, 2017, 7: 45557. |
| 19 | LIU P P, LIAO J, TANG Z J, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135. |
| 20 | ZHOU Y, ZHOU Y, SHINGU T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853. |
| 21 | LAGADINOU E D, SACH A, CALLAHAN K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells[J]. Cell Stem Cell, 2013, 12(3): 329-341. |
| 22 | KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240. |
| 23 | VLASHI E, LAGADEC C, VERGNES L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci USA, 2011, 108(38):16062-16067. DOI: 10.1073/pnas.1106704108. |
| 24 | JANISZEWSKA M, SUVÀ M L, RIGGI N, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells[J]. Genes Dev, 2012, 26(17): 1926-1944. |
| 25 | VALLE S, ALCALÁ S, MARTIN-HIJANO L, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells[J]. Nat Commun, 2020, 11(1): 5265. |
| 26 | LEE K M, GILTNANE J M, BALKO J M, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation[J]. Cell Metab, 2017, 26(4): 633-647. |
| 27 | PASTÒ A, BELLIO C, PILOTTO G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319. |
| 28 | GUO B, HAN X, TKACH D, et al. AMPK promotes the survival of colorectal cancer stem cells[J]. Animal Model Exp Med, 2018, 1(2): 134-142. |
| 29 | VELLINGA T T, BOROVSKI T, DE B V C, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer[J]. Clin Cancer Res, 2015, 21(12): 2870-2879. |
| 30 | RAGGI C, TADDEI M L, SACCO E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74(6): 1373-1385. |
| 31 | SKRTIĆ M, SRISKANTHADEVAN S, JHAS B, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia[J]. Cancer Cell, 2011, 20(5): 674-688. |
| 32 | MOLINA J R, SUN Y, PROTOPOPOVA M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability[J]. Nat Med, 2018, 24(7): 1036-1046. |
| 33 | BROWN J R, CHAN D K, SHANK J J, et al. Phase Ⅱ clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer[J]. JCI Insight, 2020, 5(11): e133247. |
| 34 | KORDES S, POLLAK M N, ZWINDERMAN A H, et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Oncol, 2015, 16(7): 839-847. |
| 35 | SANCHO P, BURGOS-RAMOS E, TAVERA A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605. |
| 36 | SHIBAO S, MINAMI N, KOIKE N, et al. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model[J]. Neuro Oncol, 2018, 20(3) :343-354. |
| 37 | ANDERSON A S, ROBERTS P C, FRISARD M I, et al. Ovarian tumor-initiating cells display a flexible metabolism[J]. Exp Cell Res, 2014, 328(1) :44-57. |
| 38 | LIU S, CONG Y, WANG D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts[J]. Stem Cell Reports, 2014, 2(1): 78-91. |
| 39 | LUO M, SHANG L, BROOKS M D, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling[J]. Cell Metab, 2018, 28(1): 69-86.e6. |
| 40 | PEI S, MINHAJUDDIN M, ADANE B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells[J]. Cell Stem Cell, 2018, 23(1): 86-100.e6. |
| 41 | ADANE B, YE H, KHAN N, et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells[J]. Cell Rep, 2019, 27(1): 238-254.e6. |
| 42 | DINARDO C D, PRATZ K W, LETAI A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study[J]. Lancet Oncol, 2018, 19(2): 216-228. |
| 43 | JONES C L, STEVENS B M, D'ALESSANDRO A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells[J]. Cancer Cell, 2018, 34(5): 724-740.e4. |
| 44 | NACHMIAS B, SCHIMMER A D. Metabolic flexibility in leukemia-adapt or die[J]. Cancer Cell, 2018, 34(5): 695-696. |
| 45 | DINARDO C D, RAUSCH C R, BENTON C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies[J]. Am J Hematol, 2018, 93(3): 401-407. |
| 46 | YI M, LI J, CHEN S, et al. Emerging role of lipid metabolism alterations in cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 118. |
| 47 | YASUMOTO Y, MIYAZAKI H, VAIDYAN L K, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J]. PLoS One, 2016, 11(1): e0147717. |
| 48 | ZHOU C, QIAN W, MA J, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1[J]. Cell Prolif, 2019, 52(1): e12514. |
| 49 | LI J, CONDELLO S, THOMES-PEPIN J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 2017, 20(3): 303-314.e5. |
| 50 | CHEN L, REN J, YANG L, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Sci Rep, 2016, 6: 19665. |
| 51 | GALBRAITH L, LEUNG H Y, AHMAD I. Lipid pathway deregulation in advanced prostate cancer[J]. Pharmacol Res, 2018, 131: 177-184. |
| 52 | ZHANG Q, YU S, LAM M M T, et al. Angiotensin Ⅱ promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. J Exp Clin Cancer Res, 2019, 38(1): 116. |
| 53 | EHMSEN S, PEDERSEN M H, WANG G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome[J]. Cell Rep, 2019, 27(13): 3927-3938.e6. |
| 54 | LI X, WU J B, LI Q, et al. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer[J]. Oncotarget, 2016, 7(11): 12869-12884. |
| 55 | PRASETYANTI P R, MEDEMA J P. Intra-tumor heterogeneity from a cancer stem cell perspective[J]. Mol Cancer, 2017, 16(1): 41. |
| 56 | SHLUSH L I, MITCHELL A, HEISLER L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells[J]. Nature, 2017, 547(7661): 104-108. |
| 57 | STEVENS B M, JONES C L, POLLYEA D A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020, 1(12): 1176-1187. |
| 58 | WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-150.e5. |
| 59 | JONES C L, STEVENS B M, POLLYEA D A, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020, 27(5): 748-764.e4. |
| 60 | YE H, ADANE B, KHAN N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche[J]. Cell Stem Cell, 2016, 19(1): 23-37. |
| 61 | HE W, LIANG B, WANG C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23): 4637-4654. |
| 62 | ZHANG Z, HAN H, RONG Y, et al. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 291. |
| 63 | TÖNJES M, BARBUS S, PARK Y J, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1[J]. Nat Med, 2013, 19(7): 901-908. |
| 64 | WANG Z Q, FADDAOUI A, BACHVAROVA M, et al. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism[J]. Oncotarget, 2015, 6(31): 31522-31543. |
| 65 | THEWES V, SIMON R, HLEVNJAK M, et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer[J]. Oncogene, 2017, 36(29): 4124-4134. |
| 66 | MAYERS J R, TORRENCE M E, DANAI L V, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers[J]. Science, 2016, 353(6304): 1161-1165. |
| 67 | HATTORI A, TSUNODA M, KONUMA T, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia[J]. Nature, 2017, 545(7655): 500-504. |
| 68 | TAHILIANI M, KOH K P, SHEN Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. |
| 69 | RAFFEL S, FALCONE M, KNEISEL N, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017, 551(7680): 384-388. |
| 70 | FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567. |
| 71 | XU W, YANG H, LIU Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases[J]. Cancer Cell, 2011, 19(1): 17-30. |
| 72 | LOSMAN J A, LOOPER R E, KOIVUNEN P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible[J]. Science, 2013, 339(6127): 1621-1625. |
| 73 | PASCHKA P, SCHLENK R F, GAIDZIK V I, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J]. J Clin Oncol, 2010, 28(22): 3636-3643. |
| 74 | YEN K, TRAVINS J, WANG F, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations[J]. Cancer Discov, 2017, 7(5): 478-493. |
| 75 | SHIH A H, MEYDAN C, SHANK K, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia[J]. Cancer Discov, 2017, 7(5): 494-505. |
| 76 | DINARDO C D, STEIN E M, DE B S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398. |
| 77 | WANG Z, YIP L Y, LEE J H J, et al. Methionine is a metabolic dependency of tumor-initiating cells[J]. Nat Med, 2019, 25(5):825-837. |
| [1] | ZHU Zijun, QIAN Yife, LI Qianyu, LI Songling, QIN Wenli, LIU Yanfeng. Anaphase-promoting complex subunit 10 promotes hepatocellular carcinoma progression through regulation of the PI3K-AKT-mTOR signaling pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(9): 1171-1182. |
| [2] | KERANMU Saitierguli, QIAN Lei, DING Siyi, MAHELIMUHAN Hanati, YANG Xueer, JIA Hao. Research progress of arginine metabolism in the regulation of mesenchymal stem cell function [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 910-915. |
| [3] | HUANG Yinghe, ZHAO Guanyu, SUN Yang, HOU Jianji, ZUO Yong. Research progress on macrophage metabolic regulation in wound healing of diabetes mellitus type 2 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 792-799. |
| [4] | ZOU Peichen, LIU Hongyu, AIHEMAITI· Ayinazhaer, ZHU Liang, TANG Yabin, LEI Huimin. Metabolic profiling of lung cancer cells with acquired resistance to sotorasib [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 138-149. |
| [5] | CHEN Huaihuang, ZUO Wu, BIAN Qian. CTCF regulates lipid metabolism and gene expression in mouse AML12 liver cell line [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1069-1082. |
| [6] | CAI Dan, HUANG Jing. Electron microscopic study of the non-canonical polycomb repressive complex 1.6 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1136-1145. |
| [7] | WU Wangshu, WANG Minzhou, SONG Ahui, ZHAO Bingru, LU Jiayue, HONG Wenkai, GU Leyi, XIE Kewei, LU Renhua. Efficacy and safety of compound amino acid capsules in the treatment of malnutrition and calcium and phosphorus metabolism disorders in maintenance hemodialysis patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 1023-1029. |
| [8] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
| [9] | LIU Yonghui, TANG Li, LIANG Taigang, ZHANG Jian, FENG Li. Research progress in the role of SIRT6 in aging and metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1439-1446. |
| [10] | WANG Renjie, HUA Hui, ZHU ChaoYu, WEI Li. Advances of GADD45b in hepatic glucose and lipid metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1316-1322. |
| [11] | LI Yu, JIANG Yifan, TONG Rongliang, CHEN Diyu, WU Jian. Research progress in the relationship between FOXM1 and neoplasm metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1323-1329. |
| [12] | JIANG Quanxin, CHEN Suzhen, LIU Junli. Research progress in ceruloplasmin regulation of lipid metabolism homeostasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 124-130. |
| [13] | LU Xiaobing, YUE Jiang, HE Shengyun, DONG Ying, LU Qing, MA Jing. Effect of intramuscular adipose tissue in the skeletal muscle of thigh on glucose metabolism in male patients with obesity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1169-1174. |
| [14] | ZHOU Wanzhen, TENG Yincheng. Research progress of the role of non-canonical Wnt signaling pathway in ovarian cancer and its potential therapeutic implications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1056-1063. |
| [15] | GAO Yu, YIN Shan, PANG Yue, LIANG Wenyi, LIU Yumin. Effect of rhubarb on gut microbiota-host co-metabolism in rats [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 997-1007. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
