Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (6): 825-832.doi: 10.3969/j.issn.1674-8115.2022.06.019
• Review • Previous Articles
Received:
2022-03-02
Accepted:
2022-06-01
Online:
2022-06-28
Published:
2022-08-19
Contact:
MA Jiao
E-mail:zhengshifan@sjtu.edu.cn;drjiaoma@shsmu.edu.cn
Supported by:
CLC Number:
ZHENG Shifan, MA Jiao. Research progress in the role of cancer stem cell metabolism in tumor development[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 825-832.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.06.019
1 | KRESO A, DICK J E. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3): 275-291. |
2 | LAPIDOT T, SIRARD C, VORMOOR J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. |
3 | BONNET D, DICK J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737. |
4 | AL-HAJJ M, WICHA M S, BENITO-HERNANDEZ A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988. |
5 | LATHIA J D, MACK S C, MULKEARNS-HUBERT E E, et al. Cancer stem cells in glioblastoma[J]. Genes Dev, 2015, 29(12): 1203-1217. |
6 | O'BRIEN C A, POLLETT A, GALLINGER S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110. |
7 | LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007, 67(3): 1030-1037. |
8 | KIM C F, JACKSON E L, WOOLFENDEN A E, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell, 2005, 121(6): 823-835. |
9 | MA S, CHAN K W, HU L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology, 2007, 132(7): 2542-2556. |
10 | HURT E M, KAWASAKI B T, KLARMANN G J, et al. CD44+ CD24- prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis[J]. Br J Cancer, 2008, 98(4): 756-765. |
11 | BATLLE E, CLEVERS H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134. |
12 | PRAGER B C, BHARGAVA S, MAHADEV V, et al. Glioblastoma stem cells: driving resilience through chaos[J]. Trends cancer, 2020, 6(3): 223-235. |
13 | POLLYEA D A, JORDAN C T. Therapeutic targeting of acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1627-1635. |
14 | YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 8. |
15 | TOH T B, LIM J J, CHOW E K. Epigenetics in cancer stem cells[J]. Mol Cancer, 2017, 16(1): 29. |
16 | WARBURG O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314. |
17 | PENG F, WANG J H, FAN W J, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia[J]. Oncogene, 2018, 37(8): 1062-1074. |
18 | HUR W, RYU J Y, KIM H U, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133[J]. Sci Rep, 2017, 7: 45557. |
19 | LIU P P, LIAO J, TANG Z J, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135. |
20 | ZHOU Y, ZHOU Y, SHINGU T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853. |
21 | LAGADINOU E D, SACH A, CALLAHAN K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells[J]. Cell Stem Cell, 2013, 12(3): 329-341. |
22 | KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240. |
23 | VLASHI E, LAGADEC C, VERGNES L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci USA, 2011, 108(38):16062-16067. DOI: 10.1073/pnas.1106704108. |
24 | JANISZEWSKA M, SUVÀ M L, RIGGI N, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells[J]. Genes Dev, 2012, 26(17): 1926-1944. |
25 | VALLE S, ALCALÁ S, MARTIN-HIJANO L, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells[J]. Nat Commun, 2020, 11(1): 5265. |
26 | LEE K M, GILTNANE J M, BALKO J M, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation[J]. Cell Metab, 2017, 26(4): 633-647. |
27 | PASTÒ A, BELLIO C, PILOTTO G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319. |
28 | GUO B, HAN X, TKACH D, et al. AMPK promotes the survival of colorectal cancer stem cells[J]. Animal Model Exp Med, 2018, 1(2): 134-142. |
29 | VELLINGA T T, BOROVSKI T, DE B V C, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer[J]. Clin Cancer Res, 2015, 21(12): 2870-2879. |
30 | RAGGI C, TADDEI M L, SACCO E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74(6): 1373-1385. |
31 | SKRTIĆ M, SRISKANTHADEVAN S, JHAS B, et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia[J]. Cancer Cell, 2011, 20(5): 674-688. |
32 | MOLINA J R, SUN Y, PROTOPOPOVA M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability[J]. Nat Med, 2018, 24(7): 1036-1046. |
33 | BROWN J R, CHAN D K, SHANK J J, et al. Phase Ⅱ clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer[J]. JCI Insight, 2020, 5(11): e133247. |
34 | KORDES S, POLLAK M N, ZWINDERMAN A H, et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Oncol, 2015, 16(7): 839-847. |
35 | SANCHO P, BURGOS-RAMOS E, TAVERA A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605. |
36 | SHIBAO S, MINAMI N, KOIKE N, et al. Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model[J]. Neuro Oncol, 2018, 20(3) :343-354. |
37 | ANDERSON A S, ROBERTS P C, FRISARD M I, et al. Ovarian tumor-initiating cells display a flexible metabolism[J]. Exp Cell Res, 2014, 328(1) :44-57. |
38 | LIU S, CONG Y, WANG D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts[J]. Stem Cell Reports, 2014, 2(1): 78-91. |
39 | LUO M, SHANG L, BROOKS M D, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling[J]. Cell Metab, 2018, 28(1): 69-86.e6. |
40 | PEI S, MINHAJUDDIN M, ADANE B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells[J]. Cell Stem Cell, 2018, 23(1): 86-100.e6. |
41 | ADANE B, YE H, KHAN N, et al. The hematopoietic oxidase NOX2 regulates self-renewal of leukemic stem cells[J]. Cell Rep, 2019, 27(1): 238-254.e6. |
42 | DINARDO C D, PRATZ K W, LETAI A, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study[J]. Lancet Oncol, 2018, 19(2): 216-228. |
43 | JONES C L, STEVENS B M, D'ALESSANDRO A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells[J]. Cancer Cell, 2018, 34(5): 724-740.e4. |
44 | NACHMIAS B, SCHIMMER A D. Metabolic flexibility in leukemia-adapt or die[J]. Cancer Cell, 2018, 34(5): 695-696. |
45 | DINARDO C D, RAUSCH C R, BENTON C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies[J]. Am J Hematol, 2018, 93(3): 401-407. |
46 | YI M, LI J, CHEN S, et al. Emerging role of lipid metabolism alterations in cancer stem cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 118. |
47 | YASUMOTO Y, MIYAZAKI H, VAIDYAN L K, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells[J]. PLoS One, 2016, 11(1): e0147717. |
48 | ZHOU C, QIAN W, MA J, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1[J]. Cell Prolif, 2019, 52(1): e12514. |
49 | LI J, CONDELLO S, THOMES-PEPIN J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 2017, 20(3): 303-314.e5. |
50 | CHEN L, REN J, YANG L, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Sci Rep, 2016, 6: 19665. |
51 | GALBRAITH L, LEUNG H Y, AHMAD I. Lipid pathway deregulation in advanced prostate cancer[J]. Pharmacol Res, 2018, 131: 177-184. |
52 | ZHANG Q, YU S, LAM M M T, et al. Angiotensin Ⅱ promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. J Exp Clin Cancer Res, 2019, 38(1): 116. |
53 | EHMSEN S, PEDERSEN M H, WANG G, et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome[J]. Cell Rep, 2019, 27(13): 3927-3938.e6. |
54 | LI X, WU J B, LI Q, et al. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer[J]. Oncotarget, 2016, 7(11): 12869-12884. |
55 | PRASETYANTI P R, MEDEMA J P. Intra-tumor heterogeneity from a cancer stem cell perspective[J]. Mol Cancer, 2017, 16(1): 41. |
56 | SHLUSH L I, MITCHELL A, HEISLER L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells[J]. Nature, 2017, 547(7661): 104-108. |
57 | STEVENS B M, JONES C L, POLLYEA D A, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020, 1(12): 1176-1187. |
58 | WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1): 136-150.e5. |
59 | JONES C L, STEVENS B M, POLLYEA D A, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020, 27(5): 748-764.e4. |
60 | YE H, ADANE B, KHAN N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche[J]. Cell Stem Cell, 2016, 19(1): 23-37. |
61 | HE W, LIANG B, WANG C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer[J]. Oncogene, 2019, 38(23): 4637-4654. |
62 | ZHANG Z, HAN H, RONG Y, et al. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling[J]. J Exp Clin Cancer Res, 2018, 37(1): 291. |
63 | TÖNJES M, BARBUS S, PARK Y J, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1[J]. Nat Med, 2013, 19(7): 901-908. |
64 | WANG Z Q, FADDAOUI A, BACHVAROVA M, et al. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism[J]. Oncotarget, 2015, 6(31): 31522-31543. |
65 | THEWES V, SIMON R, HLEVNJAK M, et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer[J]. Oncogene, 2017, 36(29): 4124-4134. |
66 | MAYERS J R, TORRENCE M E, DANAI L V, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers[J]. Science, 2016, 353(6304): 1161-1165. |
67 | HATTORI A, TSUNODA M, KONUMA T, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia[J]. Nature, 2017, 545(7655): 500-504. |
68 | TAHILIANI M, KOH K P, SHEN Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. |
69 | RAFFEL S, FALCONE M, KNEISEL N, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017, 551(7680): 384-388. |
70 | FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567. |
71 | XU W, YANG H, LIU Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases[J]. Cancer Cell, 2011, 19(1): 17-30. |
72 | LOSMAN J A, LOOPER R E, KOIVUNEN P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible[J]. Science, 2013, 339(6127): 1621-1625. |
73 | PASCHKA P, SCHLENK R F, GAIDZIK V I, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J]. J Clin Oncol, 2010, 28(22): 3636-3643. |
74 | YEN K, TRAVINS J, WANG F, et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations[J]. Cancer Discov, 2017, 7(5): 478-493. |
75 | SHIH A H, MEYDAN C, SHANK K, et al. Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemia[J]. Cancer Discov, 2017, 7(5): 494-505. |
76 | DINARDO C D, STEIN E M, DE B S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML[J]. N Engl J Med, 2018, 378(25): 2386-2398. |
77 | WANG Z, YIP L Y, LEE J H J, et al. Methionine is a metabolic dependency of tumor-initiating cells[J]. Nat Med, 2019, 25(5):825-837. |
[1] | DUAN Yujuan, HUANG Jing. Negative-stain electron microscopic study of the nucleosome remodeling and deacetylase complex [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 455-463. |
[2] | Guodong DANG, Xinyu HONG, Meiqin CAI. Interventional effects of nicotinamide mononucleotide on metabolism in aging mice [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 158-165. |
[3] | Jiu-ang MAO, Zhen WENG, Xiao-yin NIU, Yang HE, Zhen-xin WANG. Role of Tmprss6 gene in radiation-induced intestinal injury of mice [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1175-1182. |
[4] | Hong-yan XUAN, Li-hua WANG, Hua-fang LI. Review of the factors influencing bone metabolism in schizophrenia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 972-976. |
[5] | Zi-yu YANG, Juan-xiu QIN, Min LI, Qian LIU. Progress of catabolite control protein A in the regulation of metabolism and virulence of Gram-positive bacteria [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(4): 535-539. |
[6] | Jiang YUE, Yong ZHOU, Hua XU, Wen LIU, Xiao-feng HAN, Qing MAO, Ji-dong ZHANG, Jing MA, Han-dong JIANG, Wei LIU. Characteristic analysis and comparison of glycolipid metabolism in patients with coronavirus disease 2019 in common condition and severe cases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 355-359. |
[7] | Yue-ting JIANG, Jia-ying NI, Shen-rui GUO, Han LI, Yu-jia ZHUANG, Feng WANG. Physiological function of cholesterol sulfate and its role in related diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 371-375. |
[8] | Jing WU, Xue-yi LI, Jing-hong CHEN, Ze-jian WANG. Study on changes of hippocampal bile acid receptors in the depression mouse models [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1628-1634. |
[9] | LI Sen1, JIA Zi-heng1, WEI Xue-rui1, MA Sai1, LU Tian-cheng1, LI Ting-ting2, GU Yan-yun2. Role of bile acid on maintaining metabolic homeostasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1126-1130. |
[10] | LUO Gang, CUI Yong-chen, CAO Yue, ZHANG Jun-feng. Effect of surgical trauma on postoperative cognitive function and cerebral glucose metabolism in type 2 diabetic mice [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1468-1472. |
[11] | WU Ruo-lan, ZHANG Yue, YU Run-hua, DING Ze-yu, HUANG Ying. Effect of protein phosphatase 2A on energy metabolism [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1530-1535. |
[12] | LI Jia1, 2, YUAN Shu-sheng3, CAO Xiu-ping4, WANG Xin-nan5, HUANG Jian1, 6, ZHENG Yue-hui2, 6. Research progress of ovarian function regulated by ovarian material metabolism through Hippo signaling pathway [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1536-1539. |
[13] | PENG Rong, YANG Li-jun, DENG Mao-lin. Effects of low-carbohydrate diet on body weight and glycolipid metabolism in normal rats and obese rats [J]. , 2020, 40(1): 44-. |
[14] | JIA Yan1,2, WANG Hui-wen1, YI Jin-mou1, ZENG Hui2, LU Min3. Effect of the PI3K/AKT signaling pathway regulatedHMGCS1 on drug sensitivity of HL-60 cells [J]. , 2019, 39(9): 991-. |
[15] | YE Hua-ying1, 2, LI Hua-ping2. Correlation analysis of plasma lipid with glucose status and insulin resistance in pregnant women with gestational diabetes mellitus [J]. , 2019, 39(7): 768-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||