Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (10): 1266-1272.doi: 10.3969/j.issn.1674-8115.2024.10.008
• Clinical research • Previous Articles
ZHANG Xinyan(), LI Han, RAN Hui, SU Qing, ZHANG Hongmei()
Received:
2024-04-28
Accepted:
2024-05-21
Online:
2024-10-28
Published:
2024-10-28
Contact:
ZHANG Hongmei
E-mail:zhangxinyanmm@163.com;zhanghongmei02@xinhuanmed.com.cn;zhanghongmei02@xinhuamed.com.cn
Supported by:
CLC Number:
ZHANG Xinyan, LI Han, RAN Hui, SU Qing, ZHANG Hongmei. Correlation between serum SUMO1 level and hypertriglyceridemia in type 2 diabetes mellitus patients[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1266-1272.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.10.008
Index | T2DM with HTG (n=92) | T2DM without HTG (n=147) | P value |
---|---|---|---|
Age/year | 52.43±11.84 | 58.29±12.66 | <0.001 |
Male/n (%) | 64 (69.56) | 84 (57.14) | 0.054 |
BMI/(kg·m-2) | 26.34±4.00 | 25.04±3.20 | 0.006 |
WHR | 0.94±0.06 | 0.92±0.05 | 0.024 |
SBP/mmHg | 139.42±17.71 | 137.32±16.18 | 0.349 |
DBP/mmHg | 87.83±11.89 | 83.53±11.48 | 0.006 |
HbA1c/n(%) | 8.74±2.13 | 8.11±2.14 | 0.029 |
FBG/(mmol·L-1) | 9.36±3.07 | 8.33±2.61 | 0.006 |
HDL/(mmol·L-1) | 1.11±0.21 | 1.31±0.34 | <0.001 |
LDL/(mmol·L-1) | 3.43±1.02 | 3.17±0.99 | 0.055 |
TC/(mmol·L-1) | 5.62±1.13 | 5.05±1.17 | <0.001 |
TAG/(mmol·L-1) | 2.37 (2.00, 3.48) | 1.25 (0.88, 1.48) | <0.001 |
Insulin/(pmol·L-1) | 57.00 (42.45, 94.45) | 50.88 (34.52, 78.73) | 0.028 |
Scr/(μmol·L-1) | 64.09±15.16 | 61.63±16.03 | 0.243 |
ALT/(U·L-1) | 32.00 (20.00, 50.25) | 24.00 (17.00, 34.25) | 0.100 |
AST/(U·L-1) | 24.50 (20.00, 33.00) | 21.50 (17.75, 26.00) | 0.327 |
UA/(μmol·L-1) | 375.76±94.36 | 325.33±87.76 | <0.001 |
Smoking/n(%) | 31 (33.69) | 33 (22.45) | 0.060 |
Drinking/n(%) | 26 (28.26) | 33 (22.45) | 0.325 |
Tab 1 Comparison of baseline characteristics between the T2DM with HTG group and the T2DM without HTG group
Index | T2DM with HTG (n=92) | T2DM without HTG (n=147) | P value |
---|---|---|---|
Age/year | 52.43±11.84 | 58.29±12.66 | <0.001 |
Male/n (%) | 64 (69.56) | 84 (57.14) | 0.054 |
BMI/(kg·m-2) | 26.34±4.00 | 25.04±3.20 | 0.006 |
WHR | 0.94±0.06 | 0.92±0.05 | 0.024 |
SBP/mmHg | 139.42±17.71 | 137.32±16.18 | 0.349 |
DBP/mmHg | 87.83±11.89 | 83.53±11.48 | 0.006 |
HbA1c/n(%) | 8.74±2.13 | 8.11±2.14 | 0.029 |
FBG/(mmol·L-1) | 9.36±3.07 | 8.33±2.61 | 0.006 |
HDL/(mmol·L-1) | 1.11±0.21 | 1.31±0.34 | <0.001 |
LDL/(mmol·L-1) | 3.43±1.02 | 3.17±0.99 | 0.055 |
TC/(mmol·L-1) | 5.62±1.13 | 5.05±1.17 | <0.001 |
TAG/(mmol·L-1) | 2.37 (2.00, 3.48) | 1.25 (0.88, 1.48) | <0.001 |
Insulin/(pmol·L-1) | 57.00 (42.45, 94.45) | 50.88 (34.52, 78.73) | 0.028 |
Scr/(μmol·L-1) | 64.09±15.16 | 61.63±16.03 | 0.243 |
ALT/(U·L-1) | 32.00 (20.00, 50.25) | 24.00 (17.00, 34.25) | 0.100 |
AST/(U·L-1) | 24.50 (20.00, 33.00) | 21.50 (17.75, 26.00) | 0.327 |
UA/(μmol·L-1) | 375.76±94.36 | 325.33±87.76 | <0.001 |
Smoking/n(%) | 31 (33.69) | 33 (22.45) | 0.060 |
Drinking/n(%) | 26 (28.26) | 33 (22.45) | 0.325 |
Independent variable | β | Exp (β) | 95%CI | P value |
---|---|---|---|---|
SUMO1 | 0.423 | 1.527 | 1.200-1.943 | <0.001 |
HbA1c | 0.184 | 1.202 | 1.038-1.391 | 0.010 |
UA | 0.006 | 1.006 | 1.003-1.010 | <0.001 |
Tab 2 Influencing factors of HTG by Logistic regression analysis
Independent variable | β | Exp (β) | 95%CI | P value |
---|---|---|---|---|
SUMO1 | 0.423 | 1.527 | 1.200-1.943 | <0.001 |
HbA1c | 0.184 | 1.202 | 1.038-1.391 | 0.010 |
UA | 0.006 | 1.006 | 1.003-1.010 | <0.001 |
SUMO1 quartile | n/total | Crude OR OR (95%CI) | Model 1 OR (95%CI) | Model 2 OR (95%CI) |
---|---|---|---|---|
Q1 (<691 pg·mL-1) | 15/59 | 1.000 | 1.000 | 1.000 |
Q2 (692-887 pg·mL-1) | 18/60 | 1.257 (0.562~2.812) | 1.270 (0.566~2.850) | 1.319 (0.584~2.976) |
Q3 (888-1 187 pg·mL-1) | 27/58 | 2.550① (1.170~5.578) | 2.440① (1.112~5.355) | 2.419① (1.097~5.332) |
Q4 (≥1 188 pg·mL-1) | 32/62 | 3.129① (1.450~6.752) | 2.886① (1.322~6.298) | 2.707① (1.231~5.951) |
P value for trend | 0.008 | 0.010 | 0.010 |
Tab 3 Impact of serum SUMO1 levels on HTG
SUMO1 quartile | n/total | Crude OR OR (95%CI) | Model 1 OR (95%CI) | Model 2 OR (95%CI) |
---|---|---|---|---|
Q1 (<691 pg·mL-1) | 15/59 | 1.000 | 1.000 | 1.000 |
Q2 (692-887 pg·mL-1) | 18/60 | 1.257 (0.562~2.812) | 1.270 (0.566~2.850) | 1.319 (0.584~2.976) |
Q3 (888-1 187 pg·mL-1) | 27/58 | 2.550① (1.170~5.578) | 2.440① (1.112~5.355) | 2.419① (1.097~5.332) |
Q4 (≥1 188 pg·mL-1) | 32/62 | 3.129① (1.450~6.752) | 2.886① (1.322~6.298) | 2.707① (1.231~5.951) |
P value for trend | 0.008 | 0.010 | 0.010 |
Independent variable | Standardized β | t | P value |
---|---|---|---|
Male | -0.218 | -3.438 | 0.001 |
WHR | 0.165 | 2.538 | 0.012 |
TAG | 0.151 | 2.324 | 0.021 |
Scr | 0.205 | 3.186 | 0.002 |
Tab 4 Influencing factors of serum SUMO1 levels by multiple linear regression analysis
Independent variable | Standardized β | t | P value |
---|---|---|---|
Male | -0.218 | -3.438 | 0.001 |
WHR | 0.165 | 2.538 | 0.012 |
TAG | 0.151 | 2.324 | 0.021 |
Scr | 0.205 | 3.186 | 0.002 |
1 | LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997. |
2 | ZHENG Y, LEY S H, HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14: 88-98. |
3 | AL-SULAITI H, DIBOUN I, AGHA M V, et al. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes[J]. J Transl Med, 2019, 17(1): 348. |
4 | POPKIN B M. Synthesis and implications: China's nutrition transition in the context of changes across other low- and middle-income countries[J]. Obes Rev, 2014, 15(Suppl 1): 60-67. |
5 | GORDON-LARSEN P, WANG H, POPKIN B M. Overweight dynamics in Chinese children and adults[J]. Obes Rev, 2014, 15(Suppl 1): 37-48. |
6 | SUBRAMANIAN S, CHAIT A. Hypertriglyceridemia secondary to obesity and diabetes[J]. Biochim Biophys Acta, 2012, 1821(5): 819-825. |
7 | REINER Ž. Hypertriglyceridaemia and risk of coronary artery disease[J]. Nat Rev Cardiol, 2017, 14: 401-411. |
8 | YANG A L, MCNABB-BALTAR J. Hypertriglyceridemia and acute pancreatitis[J]. Pancreatology, 2020, 20(5): 795-800. |
9 | ALEXOPOULOS A S, QAMAR A, HUTCHINS K, et al. Triglycerides: emerging targets in diabetes care? review of moderate hypertriglyceridemia in diabetes[J]. Curr Diabetes Rep, 2019, 19(4): 13. |
10 | GEISS-FRIEDLANDER R, MELCHIOR F. Concepts in sumoylation: a decade on[J]. Nat Rev Mol Cell Biol, 2007, 8: 947-956. |
11 | FLOTHO A, MELCHIOR F. Sumoylation: a regulatory protein modification in health and disease[J]. Annu Rev Biochem, 2013, 82: 357-385. |
12 | GAREAU J R, LIMA C D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition[J]. Nat Rev Mol Cell Biol, 2010, 11: 861-871. |
13 | LIANG Y C, LEE C C, YAO Y L, et al. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies[J]. Sci Rep, 2016, 6: 26509. |
14 | FAGERBERG L, HALLSTRÖM B M, OKSVOLD P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics[J]. Mol Cell Proteom, 2014, 13(2): 397-406. |
15 | CHANG H M, YEH E T H. SUMO: from bench to bedside[J]. Physiol Rev, 2020, 100(4): 1599-1619. |
16 | BARRY J, LOCK R B. Small ubiquitin-related modifier-1: wrestling with protein regulation[J]. Int J Biochem Cell Biol, 2011, 43(1): 37-40. |
17 | ZHENG Q, CAO Y, CHEN Y L, et al. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1[J]. J Mol Cell Biol, 2018, 10(3): 258-266. |
18 | MOORADIAN A D. Dyslipidemia in type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2009, 5: 150-159. |
19 | COCATE P G, NATALI A J, DE OLIVEIRA A, et al. Red but not white meat consumption is associated with metabolic syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men[J]. Eur J Prev Cardiol, 2015, 22(2): 223-230. |
20 | KELLEY D E, GOODPASTER B H. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance[J]. Diabetes Care, 2001, 24(5): 933-941. |
21 | YANG Y, HE Y, WANG X, et al. Protein SUMOylation modification and its associations with disease[J]. Open Biol, 2017, 7(10): 170167. |
22 | BOHREN K M, NADKARNI V, SONG J H, et al. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus[J]. J Biol Chem, 2004, 279(26): 27233-27238. |
23 | WOO C H, ABE J. SUMO: a post-translational modification with therapeutic potential?[J]. Curr Opin Pharmacol, 2010, 10(2): 146-155. |
24 | YEH E T. SUMOylation and De-SUMOylation: wrestling with life's processes[J]. J Biol Chem, 2009, 284(13): 8223-8227. |
25 | SEGERSTOLPE Å, PALASANTZA A, ELIASSON P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes[J]. Cell Metab, 2016, 24(4): 593-607. |
26 | DAI X Q, PLUMMER G, CASIMIR M, et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans[J]. Diabetes, 2011, 60(3): 838-847. |
27 | HE X Y, LAI Q H, CHEN C, et al. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function[J]. Diabetologia, 2018, 61(4): 881-895. |
28 | SAPIR A. Not so slim anymore-evidence for the role of SUMO in the regulation of lipid metabolism[J]. Biomolecules, 2020, 10(8): E1154. |
29 | CARIOU B, CHARBONNEL B, STAELS B. Thiazolidinediones and PPARγ agonists: time for a reassessment[J]. Trends Endocrinol Metab, 2012, 23(5): 205-215. |
30 | TONTONOZ P, SPIEGELMAN B M. Fat and beyond: the diverse biology of PPARgamma[J]. Annu Rev Biochem, 2008, 77: 289-312. |
31 | MIKKONEN L, HIRVONEN J, JÄNNE O A. SUMO-1 regulates body weight and adipogenesis via PPARγ in male and female mice[J]. Endocrinology, 2013, 154(2): 698-708. |
32 | AHMADIAN M, SUH J M, HAH N, et al. PPARγ signaling and metabolism: the good, the bad and the future[J]. Nat Med, 2013, 19: 557-566. |
33 | WADOSKY K M, WILLIS M S. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation[J]. Am J Physiol Heart Circ Physiol, 2012, 302(3): H515-H526. |
34 | KERSHAW E E, SCHUPP M, GUAN H P, et al. PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo[J]. Am J Physiol Endocrinol Metab, 2007, 293(6): E1736-E1745. |
35 | WOLFRUM C, STOFFEL M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion[J]. Cell Metab, 2006, 3(2): 99-110. |
36 | BELAGULI N S, ZHANG M, BRUNICARDI F C, et al. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation[J]. PLoS One, 2012, 7(10): e48019. |
37 | LIU Y, DOU X, ZHOU W Y, et al. Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver-adipose tissue crosstalk [J]. Hepatology, 2021, 74(4): 1864-1883. |
38 | HIRANO Y, MURATA S, TANAKA K, et al. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway[J]. J Biol Chem, 2003, 278(19): 16809-16819. |
39 | ARITO M, HORIBA T, HACHIMURA S, et al. Growth factor-induced phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby stimulating the expression of their target genes, low density lipoprotein uptake, and lipid synthesis[J]. J Biol Chem, 2008, 283(22): 15224-15231. |
40 | LIU B, WANG T, MEI W, et al. Small ubiquitin-like modifier (SUMO) protein-specific protease 1 de-SUMOylates Sharp-1 protein and controls adipocyte differentiation[J]. J Biol Chem, 2014, 289(32): 22358-22364. |
41 | SHIMANO H, SATO R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13: 710-730. |
42 | SOYAL S M, NOFZIGER C, DOSSENA S, et al. Targeting SREBPs for treatment of the metabolic syndrome[J]. Trends Pharmacol Sci, 2015, 36(6): 406-416. |
43 | WANG Q, ZHANG N, YANG X, et al. ERα promotes SUMO1 transcription by binding with the ERE and enhances SUMO1-mediated protein SUMOylation in breast cancer[J]. Gland Surg, 2023, 12(7): 963-973. |
44 | CHO S J, YUN S M, LEE D H, et al. Plasma SUMO1 protein is elevated in Alzheimer's disease[J]. J Alzheimers Dis, 2015, 47(3): 639-643. |
[1] | WU Lingheng, CHEN Jianxiong, ZHANG Mengjiao, SHA Lei, CAO Mengmeng, SHEN Cuiqin, DU Lianfang, LI Zhaojun. A study of the effect of suboptimal glycemic control on subclinical myocardial systolic function in patients with T2DM [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1024-1031. |
[2] | LUAN Jiayan, LI Peng, HAN Bangmin. Role of SUMOylation in spermatogenesis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 925-930. |
[3] | HE Zhijie, HE Jinchun, ZHANG Yanpei, WANG Yaodong, WANG Zhanke. Analysis of lipoprotein subclasses of family with familial hypertriglyceridemia based on VAP method [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 482-489. |
[4] | Jing-jing ZHANG, Chao-yu ZHU, Yuan-yuan XIAO, Fu-song JIANG, Qing-ge GAO, Yun-yun FANG, Li WEI. Association study of variation of glucagon-like peptide-1 receptor gene rs3765467 and type 2 diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1215-1221. |
[5] | Yan-yun HAO, Si-hui YÜ, Jing LU, Xiang GU, Fan ZHANG, Jin-ke CHENG, Tian-shi WANG. Role of SIRT3 SUMOylation deficiency in the proliferation and chemotherapeutic sensitivity of breast cancer cells MCF7 [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1557-1563. |
[6] | Qiang-qiang XIONG, Jun TU, Jun-ru LI, Jin-ke CHENG, Jian-hong ZUO, Ya-lan CHEN. Review of proteomic study of protein SUMOylation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 89-94. |
[7] | WANG Ting-ting1, 2, LI Ming-jie1, LIN Ning1, NIU Yi-xin1, JIAN Wei-xia1, SU Qing1. Relationship between high serum uric acid level and short-term progression of albuminuria in hospitalized diabetic patients [J]. , 2019, 39(7): 754-. |
[8] | GAO Wei1, WANG Xue-jiao2, ZHEN Qin2, DING Xiao-ying2, XU Huan-bai2, WANG Yu-fan2, PENG Yong-de2. Analysis of risk factors of decreased heart rate variability in patients with type 2 diabetes mellitus [J]. , 2019, 39(6): 629-. |
[9] | WANG Ling-xiao, LIU Ting-ting, YANG Xiao-hui, YAO Zhi-qing, CAI Hui-zhen. Effect of Lycium barbarum polysaccharides on inflammatory cytokines in type 2 diabetes mellitus model mice without myeloid differentiation factor 88 gene [J]. , 2019, 39(2): 136-. |
[10] | WANG Xiu-zhi, ZUO Yong. Inhibition effect of SUMOylation of peroxisome proliferator activated receptor γ1 on macrophage M2 polarization [J]. , 2019, 39(12): 1402-. |
[11] | CHENG Jin-ke. Ubiquitin-like modification (SUMOylation) and genomic stability [J]. , 2018, 38(7): 719-. |
[12] | DONG Rui1, WANG Ying1, WANG Yu-mei1, SUN Zu-jun1, 2, YI Jing1, YANG Jie1. SENP3-mediated de-SUMOylation of p53 inhibits its activity in human lung cancer cell lines [J]. , 2018, 38(7): 732-. |
[13] | FU Tian-ran, ZHANG Liang. Effect of sumoylation on the structure and activity of human thymine DNA glycosylase [J]. , 2018, 38(1): 24-. |
[14] | LIU Wei-juan, HE Jin-chun, HE Jin-xiang, et al. Observation of cardiac and cerebral vascular endpoint events of families with familial hypertriglyceridemia [J]. , 2014, 34(12): 1753-. |
[15] | MIAO Yu, ZHAO Wen-bo, LI Qing, et al. Structure, location, function, and regulation of SUMO specific protease family [J]. , 2014, 34(11): 1683-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||