| [1] |
GALVIN V C, YANG S T, PASPALAS C D, et al. Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex[J]. Neuron, 2020, 106(4): 649-661.e4.
|
| [2] |
KAWAKAMI K, YANAGAWA M, HIRATSUKA S, et al. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias[J]. Nat Commun, 2022, 13(1): 487.
|
| [3] |
DEAN B. Muscarinic M1 and M4 receptor agonists for schizophrenia: promising candidates for the therapeutic arsenal[J]. Expert Opin Investig Drugs, 2023, 32(12): 1113-1121.
|
| [4] |
KAOULLAS M G, THAL D M, CHRISTOPOULOS A, et al. Ligand bias at the muscarinic acetylcholine receptor family: opportunities and challenges[J]. Neuropharmacology, 2024, 258: 110092.
|
| [5] |
SCARPA M, MOLLOY C, JENKINS L, et al. Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative disease[J]. Proc Natl Acad Sci USA, 2021, 118(50): e2107389118.
|
| [6] |
BRADLEY S J, MOLLOY C, VALUSKOVA P, et al. Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs[J]. Nat Chem Biol, 2020, 16(3): 240-249.
|
| [7] |
MATTHEES E S F, HAIDER R S, HOFFMANN C, et al. Differential regulation of GPCRs: are GRK expression levels the key?[J]. Front Cell Dev Biol, 2021, 9: 687489.
|
| [8] |
WANG D X, YAO Y J, WANG S Q, et al. Structural insights into M1 muscarinic acetylcholine receptor signaling bias between Gαq and β-arrestin through BRET assays and molecular docking[J]. Int J Mol Sci, 2023, 24(8): 7356.
|
| [9] |
FOX R I, STERN M, MICHELSON P. Update in Sjögren syndrome[J]. Curr Opin Rheumatol, 2000, 12(5): 391-398.
|
| [10] |
SCHRAGE R, SEEMANN W K, KLÖCKNER J, et al. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor[J]. Br J Pharmacol, 2013, 169(2): 357-370.
|
| [11] |
KAUL I, SAWCHAK S, CORRELL C U, et al. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial[J]. Lancet, 2024, 403(10422): 160-170.
|
| [12] |
SHIREY J K, BRADY A E, JONES P J, et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning[J]. J Neurosci, 2009, 29(45): 14271-14286.
|
| [13] |
BERSTEIN G, BLANK J L, JHON D Y, et al. Phospholipase C-β1 is a GTPase-activating protein for Gq/11, its physiologic regulator[J]. Cell, 1992, 70(3): 411-418.
|
| [14] |
RAJAGOPAL S, SHENOY S K. GPCR desensitization: acute and prolonged phases[J]. Cell Signal, 2018, 41: 9-16.
|
| [15] |
KAHSAI A W, SHAH K S, SHIM P J, et al. Signal transduction at GPCRs: allosteric activation of the ERK MAPK by β-arrestin[J]. Proc Natl Acad Sci USA, 2023, 120(43): e2303794120.
|
| [16] |
LATORRACA N R, MASUREEL M, HOLLINGSWORTH S A, et al. How GPCR phosphorylation patterns orchestrate arrestin-mediated signaling[J]. Cell, 2020, 183(7): 1813-1825.e18.
|
| [17] |
GUREVICH E V, TESMER J J G, MUSHEGIAN A, et al. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs[J]. Pharmacol Ther, 2012, 133(1): 40-69.
|
| [18] |
GIACOBINI E, CLAUDIO CUELLO A, FISHER A. Reimagining cholinergic therapy for Alzheimer's disease[J]. Brain, 2022, 145(7): 2250-2275.
|
| [19] |
SCARR E, SEO M S, AUMANN T D, et al. The distribution of muscarinic M1 receptors in the human hippocampus[J]. J Chem Neuroanat, 2016, 77: 187-192.
|
| [20] |
NGUYEN H T M, VAN DER WESTHUIZEN E T, LANGMEAD C J, et al. Opportunities and challenges for the development of M1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits[J]. Br J Pharmacol, 2024, 181(14): 2114-2142.
|
| [21] |
DRUBE J, HAIDER R S, MATTHEES E F, et al. GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation[J]. Nat Commun, 2022, 13(1): 540.
|
| [22] |
DUAN J, LIU H, ZHAO F H, et al. GPCR activation and GRK2 assembly by a biased intracellular agonist[J]. Nature, 2023, 620(7974): 676-681.
|
| [23] |
CARMAN C V, PARENT J L, DAY P W, et al. Selective regulation of Gαq/11 by an RGS domain in the G protein-coupled receptor kinase, GRK2[J]. J Biol Chem, 1999, 274(48): 34483-34492.
|
| [24] |
MATTHEES E S F, FILOR J C, JAISWAL N, et al. GRK specificity and Gβγ dependency determines the potential of a GPCR for arrestin-biased agonism[J]. Commun Biol, 2024, 7(1): 802.
|
| [25] |
EICHMANN T, LORENZ K, HOFFMANN M, et al. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gβγ binding site[J]. J Biol Chem, 2003, 278(10): 8052-8057.
|
| [26] |
GARDNER J, EIGER D S, HICKS C, et al. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization[J]. Sci Signal, 2024, 17(823): eadd9139.
|
| [27] |
ROOK J M, ABE M, CHO H P, et al. Diverse effects on M1 signaling and adverse effect liability within a series of M1 ago-PAMs[J]. ACS Chem Neurosci, 2017, 8(4): 866-883.
|