| 1 |
HARBECK N, GNANT M. Breast cancer[J]. Lancet, 2017, 389(10074): 1134-1150.
|
| 2 |
FARIA S S, COSTANTINI S, DE LIMA V C C, et al. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer[J]. J Biomed Sci, 2021, 28(1): 26.
|
| 3 |
LOVELESS R, BLOOMQUIST R, TENG Y. Pyroptosis at the forefront of anticancer immunity[J]. J Exp Clin Cancer Res, 2021, 40(1): 264.
|
| 4 |
WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103.
|
| 5 |
GABASHVILI A N, VODOPYANOV S S, CHMELYUK N S, et al. Encapsulin based self-assembling iron-containing protein nanoparticles for stem cells MRI visualization[J]. Int J Mol Sci, 2021, 22(22): 12275.
|
| 6 |
XIAO Y, ZHANG T, MA X B, et al. Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy[J]. Adv Sci (Weinh), 2021, 8(24): e2101840.
|
| 7 |
LI M L, KIM J, RHA H, et al. Photon-controlled pyroptosis activation (PhotoPyro): an emerging trigger for antitumor immune response[J]. J Am Chem Soc, 2023, 145(11): 6007-6023.
|
| 8 |
ZHU Y, DENG J L, LU H W, et al. Reverse magnetic resonance tuning nanoplatform with heightened sensitivity for non-invasively multiscale visualizing ferroptosis-based tumor sensitization therapy[J]. Biomaterials, 2025, 315: 122935.
|
| 9 |
NTZIACHRISTOS V, PLEITEZ M A, AIME S, et al. Emerging technologies to image tissue metabolism[J]. Cell Metab, 2019, 29(3): 518-538.
|
| 10 |
YUAN Y, WANG C X, KUDDANNAYA S, et al. In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI[J]. Nat Biomed Eng, 2022, 6(5): 658-666.
|
| 11 |
JONES K M, POLLARD A C, PAGEL M D. Clinical applications of chemical exchange saturation transfer (CEST) MRI[J]. J Magn Reson Imaging, 2018, 47(1): 11-27.
|
| 12 |
JIN T, NICHOLLS F J, CRUM W R, et al. Diamagnetic chemical exchange saturation transfer (diaCEST) affords magnetic resonance imaging of extracellular matrix hydrogel implantation in a rat model of stroke[J]. Biomaterials, 2017, 113: 176-190.
|
| 13 |
LI Y G, CHEN H W, XU J D, et al. CEST theranostics: label-free MR imaging of anticancer drugs[J]. Oncotarget, 2016, 7(6): 6369-6378.
|
| 14 |
FILIPPOV S K, STAROVOYTOVA L, KONÁK C, et al. pH sensitive polymer nanoparticles: effect of hydrophobicity on self-assembly[J]. Langmuir, 2010, 26(18): 14450-14457.
|
| 15 |
ZHAO P F, WANG M, CHEN M, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy[J]. Biomaterials, 2020, 254: 120142.
|
| 16 |
SHEN X J, WANG H B, WENG C H, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186.
|
| 17 |
WU J L, LIN S, WAN B, et al. Pyroptosis in liver disease: new insights into disease mechanisms[J]. Aging Dis, 2019, 10(5): 1094-1108.
|
| 18 |
YUAN Y, ZHANG J, QI X L, et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy[J]. Nat Mater, 2019, 18(12): 1376-1383.
|
| 19 |
LI L, TIAN H L, ZHANG Z, et al. Carrier-free nanoplatform via evoking pyroptosis and immune response against breast cancer[J]. ACS Appl Mater Interfaces, 2023, 15(1): 452-468.
|