1 |
Carter JH, McNulty SN, Cimino PJ, et al. Targeted next-generation sequencing in molecular subtyping of lower-grade diffuse gliomas: application of the World Health Organization's 2016 revised criteria for central nervous system tumors[J]. J Mol Diagn, 2017, 19(2): 328-337.
|
2 |
Pessina F, Navarria P, Cozzi L, et al. Value of surgical resection in patients with newly diagnosed grade Ⅲ glioma treated in a multimodal approach: surgery, chemotherapy and radiotherapy[J]. Ann Surg Oncol, 2016, 23(9): 3040-3046.
|
3 |
Yamashiro K, Nakao K, Ohba S, et al. Human glioma cells acquire temozolomide resistance after repeated drug exposure via DNA mismatch repair dysfunction[J]. Anticancer Res, 2020, 40(3): 1315-1323.
|
4 |
Yamamura M, Amano Y, Sakagami H, et al. Calcium mobilization during nicotine-induced cell death in human glioma and glioblastoma cell lines[J]. Anticancer Res, 1998, 18(4A): 2499-2502.
|
5 |
Robil N, Petel F, Kilhoffer MC, et al. Glioblastoma and calcium signaling: analysis of calcium toolbox expression[J]. Int J Dev Biol, 2015, 59(7/8/9): 407-415.
|
6 |
Zhang Y, Cruickshanks N, Yuan F, et al. Targetable T-type calcium channels drive glioblastoma[J]. Cancer Res, 2017, 77(13): 3479-3490.
|
7 |
Song M, Chen D, Yu SP. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na+/Ca2+ exchanger and increasing intracellular Ca2+[J]. Br J Pharmacol, 2014, 171(14): 3432-3447.
|
8 |
Amoroso S, de Maio M, Russo GM, et al. Pharmacological evidence that the activation of the Na+-Ca2+ exchanger protects C6 glioma cells during chemical hypoxia[J]. Br J Pharmacol, 1997, 121(2): 303-309.
|
9 |
Hu HJ, Wang SS, Wang YX, et al. Blockade of the forward Na+/Ca2+ exchanger suppresses the growth of glioblastoma cells through Ca2+-mediated cell death[J]. Br J Pharmacol, 2019, 176(15): 2691-2707.
|
10 |
Abrunhosa-Branquinho AN, Bar-Deroma R, Collette S, et al. Radiotherapy quality assurance for the RTOG 0834/EORTC 26053-22054/NCIC CTG CEC.1/CATNON intergroup trial concurrent and adjuvant temozolomide chemotherapy in newly diagnosed non-1p/19q deleted anaplastic glioma: individual case review analysis[J]. Radiother Oncol, 2018, 127(2): 292-298.
|
11 |
Watanabe Y, Kimura J. Blocking effect of bepridil on Na+/Ca2+ exchange current in Guinea pig cardiac ventricular myocytes[J]. Jpn J Pharmacol, 2001, 85(4): 370-375.
|
12 |
Cheng H, Zhang Y, Du C, et al. High potency inhibition of hERG potassium channels by the sodium-calcium exchange inhibitor KB-R7943[J]. Br J Pharmacol, 2012, 165(7): 2260-2273.
|
13 |
Secondo A, Pannaccione A, Molinaro P, et al. Molecular pharmacology of the amiloride analog 3-amino-6-chloro-5-[(4-chloro-benzyl)amino]-n-[[(2, 4-dimethylbenzyl)-amino]iminomethyl]-pyrazinecarboxamide (CB-DMB) as a pan inhibitor of the Na+-Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in stably transfected cells[J]. J Pharmacol Exp Ther, 2009, 331(1): 212-221.
|
14 |
Zhao YT, Valdivia CR, Gurrola GB, et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function[J]. Proc Natl Acad Sci USA, 2015, 112(13): E1669-E1677.
|
15 |
Bender S, Tang YJ, Lindroth AM, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas[J]. Cancer Cell, 2013, 24(5): 660-672.
|
16 |
Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies[J]. Basic Clin Pharmacol Toxicol, 2018, 123(3): 233-235.
|
17 |
程哲, 汪潮潮, 吴娟, 等. BFAR在胶质瘤中的表达及其与胶质瘤预后的关系[J]. 医学信息, 2021, 34(7): 78-81.
|
18 |
Li JH, Li SY, Shen MX, et al. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma[J]. J Ethnopharmacol, 2021, 274: 114034.
|
19 |
Li LL, Sun LN, Zhou HY, et al. Selective alteration of expression of Na+/Ca2+ exchanger isoforms after transient focal cerebral ischemia in rats[J]. Neurosci Lett, 2006, 404(3): 249-253.
|
20 |
Tomimoto H, Yanagihara T. Immunoelectron microscopic study of tubulin and microtubule-associated proteins after transient cerebral ischemia in gerbils[J]. Acta Neuropathol, 1992, 84(4): 394-399.
|
21 |
Zhang B, Liu B, Roos CM, et al. TRPC6 and TRPC4 heteromultimerization mediates store depletion-activated NCX1 reversal in proliferative vascular smooth muscle cells[J]. Channels (Austin), 2018, 12(1): 119-125.
|
22 |
Zhang J. New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure[J]. Adv Exp Med Biol, 2013, 961: 329-343.
|
23 |
Pignataro G, Gala R, Cuomo O, et al. Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia[J]. Stroke, 2004, 35(11): 2566-2570.
|
24 |
Hu HJ, Song M. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets[J]. J Stroke Cerebrovasc Dis, 2017, 26(12): 2706-2719.
|
25 |
Goto Y, Ogata M, Kita S, et al. YM-244769, a novel Na+/Ca2+ exchange inhibitor, efficiently improves ischemia/reperfusion-induced renal injury[J]. Biophys J, 2012, 102(3): 662a-663a.
|
26 |
Watanabe Y, Koide Y, Kimura J. Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors[J]. J Pharmacol Sci, 2006, 102(1): 7-16.
|
27 |
White CD, Sacks DB. Regulation of MAP kinase signaling by calcium[J]. Methods Mol Biol, 2010, 661: 151-165.
|