JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (7): 865-875.doi: 10.3969/j.issn.1674-8115.2021.07.004
• Basic research • Previous Articles
Yu-chen LI(), Li-lian BAI, He-feng HUANG, Xin-mei LIU()
Online:
2021-07-28
Published:
2021-08-03
Contact:
Xin-mei LIU
E-mail:yuchen_li1995@163.com;liuxinmei@shsmu.edu.cn
Supported by:
CLC Number:
Yu-chen LI, Li-lian BAI, He-feng HUANG, Xin-mei LIU. Single-cell transcriptomic analysis of development and involution of human thymic stroma[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 865-875.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.07.004
1 | Han J, Zúñiga-Pflücker JC. A 2020 view of thymus stromal cells in T cell development[J]. J Immunol, 2021, 206(2): 249-256. |
2 | Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells[J]. Annu Rev Immunol, 2003, 21: 139-176. |
3 | Farley AM, Morris LX, Vroegindeweij E, et al. Dynamics of thymus organogenesis and colonization in early human development[J]. Development, 2013, 140(9): 2015-2026. |
4 | Nishino M, Ashiku SK, Kocher ON, et al. The thymus: a comprehensive review[J]. Radiographics, 2006, 26(2): 335-348. |
5 | Palmer S, Albergante L, Blackburn CC, et al. Thymic involution and rising disease incidence with age[J]. Proc Natl Acad Sci U S A, 2018, 115(8): 1883-1888. |
6 | Dik WA, Pike-Overzet K, Weerkamp F, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling[J]. J Exp Med, 2005, 201(11): 1715-1723. |
7 | Mingueneau M, Kreslavsky T, Gray D, et al. The transcriptional landscape of αβ T cell differentiation[J]. Nat Immunol, 2013, 14(6): 619-632. |
8 | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382. |
9 | Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214. |
10 | Schier AF. Single-cell biology: beyond the sum of its parts[J]. Nat Methods, 2020, 17(1): 17-20. |
11 | Zeng Y, Liu C, Gong Y, et al. Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos[J]. Immunity, 2019, 51(5): 930-948.e6. |
12 | Park JE, Botting RA, Domínguez Conde C, et al. A cell atlas of human thymic development defines T cell repertoire formation[J]. Science, 2020, 367(6480): eaay3224. |
13 | Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888-1902.e21. |
14 | Dong J, Zhou P, Wu Y, et al. Enhancing single-cell cellular state inference by incorporating molecular network features[EB/OL]. (2019-10-15)[2021-03-20]. . |
15 | Oughtred R, Rust J, Chang C, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions[J]. Protein Sci, 2021, 30(1): 187-200. |
16 | Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nat Biotechnol, 2018: 38-44. |
17 | Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. |
18 | Jardine L, Haniffa M. Reconstructing human DC, monocyte and macrophage development in utero using single cell technologies[J]. Mol Immunol, 2020, 123: 1-6. |
19 | De Val S, Black BL. Transcriptional control of endothelial cell development[J]. Dev Cell, 2009, 16(2): 180-195. |
20 | Thiele BJ, Doller A, Kähne T, et al. RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen Ⅰ and Ⅲ synthesis[J]. Circ Res, 2004, 95(11): 1058-1066. |
21 | van der Merwe PA, Davis SJ. Molecular interactions mediating T cell antigen recognition[J]. Annu Rev Immunol, 2003, 21: 659-684. |
22 | Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging[J]. Immun Ageing, 2020, 17: 2. |
23 | Fletcher AL, Seach N, Reiseger JJ, et al. Reduced thymic aire expression and abnormal NF-κB2 signaling in a model of systemic autoimmunity[J]. J Immunol, 2009, 182(5): 2690-2699. |
24 | Oh J, Wang W, Thomas R, et al. Capacity of tTreg generation is not impaired in the atrophied thymus[J]. PLoS Biol, 2017, 15(11): e2003352. |
25 | Cavadini P, Vermi W, Facchetti F, et al. AIRE deficiency in thymus of 2 patients with omenn syndrome[J]. J Clin Invest, 2005, 115(3): 728-732. |
26 | Passos GA, Speck-Hernandez CA, Assis AF, et al. Update on aire and thymic negative selection[J]. Immunology, 2018, 153(1): 10-20. |
27 | Kecha O, Brilot F, Martens H, et al. Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures[J]. Endocrinology, 2000, 141(3): 1209-1217. |
28 | Kozai M, Kubo Y, Katakai T, et al. Essential role of CCL21 in establishment of central self-tolerance in T cells[J]. J Exp Med, 2017, 214(7): 1925-1935. |
29 | Halkias J, Melichar HJ, Taylor KT, et al. Tracking migration during human T cell development[J]. Cell Mol Life Sci, 2014, 71(16): 3101-3117. |
30 | Wieczorek M, Abualrous ET, Sticht J, et al. Major histocompatibility complex (MHC) class Ⅰ and MHC class Ⅱ proteins: conformational plasticity in antigen presentation[J]. Front Immunol, 2017, 8: 292. |
31 | Pober JS, Merola J, Liu R, et al. Antigen presentation by vascular cells[J]. Front Immunol, 2017, 8: 1907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||