
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (10): 1323-1329.doi: 10.3969/j.issn.1674-8115.2021.10.009
• Clinical research • Previous Articles Next Articles
Fang-fang LIU1(
), Guan-shui BAO1,2(
), Meng-xia YAN1
Online:2021-10-28
Published:2021-09-23
Contact:
Guan-shui BAO
E-mail:583468089@qq.com;baogs@163.com
Supported by:CLC Number:
Fang-fang LIU, Guan-shui BAO, Meng-xia YAN. Construction of a decision-making model for primary headache based on Nomogram[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1323-1329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.10.009
| Variable | Modeling group (n=152) | Validation group (n=58) | χ2 value | P value |
|---|---|---|---|---|
| Gender / n(%) | 0.006 | 0.939 | ||
| Male | 48 (31.6) | 18 (31.0) | ||
| Female | 104 (68.4) | 40 (69.0) | ||
| Course / n(%) | 0.004 | 0.947 | ||
| Within half a year | 40 (26.3) | 15 (25.9) | ||
| More than half a year | 112 (73.7) | 43 (74.1) | ||
| Throbbing / n(%) | 3.194 | 0.074 | ||
| Yes | 19 (12.5) | 13 (22.4) | ||
| No | 133 (87.5) | 45 (77.6) | ||
| Occipital / n(%) | 2.298 | 0.130 | ||
| Yes | 51 (33.6) | 26 (44.8) | ||
| No | 101 (66.4) | 32 (55.2) | ||
| Tempus / n(%) | 0.900 | 0.343 | ||
| Yes | 74 (48.7) | 24 (41.4) | ||
| No | 78 (51.3) | 34 (58.6) | ||
| Severe intensity / n(%) | 4.280 | 0.118 | ||
| Light | 31 (21.7) | 17 (29.3) | ||
| Medium | 85 (55.9) | 34 (58.6) | ||
| Heavy | 36 (22.4) | 7 (12.1) | ||
| Visual aura symptom / n(%) | 0.286 | 0.593 | ||
| Yes | 13 (8.6) | 3 (5.2) | ||
| No | 139 (91.4) | 55 (94.8) | ||
| Nausea/vomiting/ n(%) | 2.056 | 0.152 | ||
| Yes | 58 (38.2) | 16 (27.6) | ||
| No | 94 (61.8) | 42 (72.4) | ||
| Photophobia/phonophobia/ n(%) | 2.921 | 0.087 | ||
| Yes | 31 (20.4) | 6 (10.3) | ||
| No | 121 (79.6) | 52 (89.7) | ||
| Change of headache after activities/ n(%) | 4.553 | 0.124 | ||
| Aggravate | 55 (36.2) | 22 (38.0) | ||
| Unchanged | 83 (54.6) | 35 (60.3) | ||
| Relieve | 14 (9.2) | 1 (1.7) | ||
| Related to menstruation/ n(%) | 0.111 | 0.739 | ||
| Yes | 21 (13.8) | 7 (12.1) | ||
| No | 131 (86.2) | 51 (87.9) | ||
| Alleviative way/ n(%) | 6.955 | 0.064 | ||
| Persistence | 23 (15.1) | 4 (6.9) | ||
| Rest | 53 (34.9) | 29 (50.0) | ||
| Drug | 69 (45.4) | 25 (43.1) | ||
| Else | 7 (4.6) | 0 | ||
| Diagnose / n(%) | 1.008 | 0.315 | ||
| Migraine | 80 (52.6) | 35 (61.1) | ||
| Tension-type headache | 72 (47.4) | 23 (39.7) |
Tab 1 Comparison of baseline characteristics of patients in the modeling group and validation group
| Variable | Modeling group (n=152) | Validation group (n=58) | χ2 value | P value |
|---|---|---|---|---|
| Gender / n(%) | 0.006 | 0.939 | ||
| Male | 48 (31.6) | 18 (31.0) | ||
| Female | 104 (68.4) | 40 (69.0) | ||
| Course / n(%) | 0.004 | 0.947 | ||
| Within half a year | 40 (26.3) | 15 (25.9) | ||
| More than half a year | 112 (73.7) | 43 (74.1) | ||
| Throbbing / n(%) | 3.194 | 0.074 | ||
| Yes | 19 (12.5) | 13 (22.4) | ||
| No | 133 (87.5) | 45 (77.6) | ||
| Occipital / n(%) | 2.298 | 0.130 | ||
| Yes | 51 (33.6) | 26 (44.8) | ||
| No | 101 (66.4) | 32 (55.2) | ||
| Tempus / n(%) | 0.900 | 0.343 | ||
| Yes | 74 (48.7) | 24 (41.4) | ||
| No | 78 (51.3) | 34 (58.6) | ||
| Severe intensity / n(%) | 4.280 | 0.118 | ||
| Light | 31 (21.7) | 17 (29.3) | ||
| Medium | 85 (55.9) | 34 (58.6) | ||
| Heavy | 36 (22.4) | 7 (12.1) | ||
| Visual aura symptom / n(%) | 0.286 | 0.593 | ||
| Yes | 13 (8.6) | 3 (5.2) | ||
| No | 139 (91.4) | 55 (94.8) | ||
| Nausea/vomiting/ n(%) | 2.056 | 0.152 | ||
| Yes | 58 (38.2) | 16 (27.6) | ||
| No | 94 (61.8) | 42 (72.4) | ||
| Photophobia/phonophobia/ n(%) | 2.921 | 0.087 | ||
| Yes | 31 (20.4) | 6 (10.3) | ||
| No | 121 (79.6) | 52 (89.7) | ||
| Change of headache after activities/ n(%) | 4.553 | 0.124 | ||
| Aggravate | 55 (36.2) | 22 (38.0) | ||
| Unchanged | 83 (54.6) | 35 (60.3) | ||
| Relieve | 14 (9.2) | 1 (1.7) | ||
| Related to menstruation/ n(%) | 0.111 | 0.739 | ||
| Yes | 21 (13.8) | 7 (12.1) | ||
| No | 131 (86.2) | 51 (87.9) | ||
| Alleviative way/ n(%) | 6.955 | 0.064 | ||
| Persistence | 23 (15.1) | 4 (6.9) | ||
| Rest | 53 (34.9) | 29 (50.0) | ||
| Drug | 69 (45.4) | 25 (43.1) | ||
| Else | 7 (4.6) | 0 | ||
| Diagnose / n(%) | 1.008 | 0.315 | ||
| Migraine | 80 (52.6) | 35 (61.1) | ||
| Tension-type headache | 72 (47.4) | 23 (39.7) |
| Variable | Univariate Logistic regression | Multivariate Logistic regression | |||||
|---|---|---|---|---|---|---|---|
| OR | 95%CI | P value | OR | 95%CI | P value | ||
| Gender | 2.047 | 1.011‒4.146 | 0.047 | NA | NA | NA | |
| Course | 3.720 | 1.660‒8.336 | 0.001 | 3.364 | 1.145‒9.888 | 0.027 | |
| Throbbing | 0.616 | 0.233‒1.629 | 0.329 | ‒ | ‒ | ‒ | |
| Occipital | 2.106 | 1.051‒4.220 | 0.036 | 3.271 | 1.166‒9.181 | 0.024 | |
| Tempus | 0.658 | 0.347‒1.249 | 0.200 | ‒ | ‒ | ‒ | |
| Severe intensity | 2.566 | 1.504‒4.379 | 0.001 | 2.036 | 1.010‒4.104 | 0.047 | |
| Visual Aura symptoms | 0.368 | 0.108‒1.253 | 0.110 | ‒ | ‒ | ‒ | |
| Nausea/vomiting | 0.100 | 0.046‒0.218 | 0.000 | 0.094 | 0.034‒0.260 | 0.000 | |
| Photophobia/phonophobia | 0.061 | 0.018‒0.213 | 0.000 | 0.081 | 0.017‒0.385 | 0.002 | |
| Change of headache after activities | 0.396 | 0.225‒0.696 | 0.001 | 0.414 | 0.199‒0.863 | 0.019 | |
| Related to menstruation | 0.233 | 0.081‒0.675 | 0.007 | NA | NA | NA | |
| Alleviative way | 1.504 | 0.995‒2.274 | 0.053 | NA | NA | NA | |
Tab 2 Univariate and multivariate Logistic regression analysis
| Variable | Univariate Logistic regression | Multivariate Logistic regression | |||||
|---|---|---|---|---|---|---|---|
| OR | 95%CI | P value | OR | 95%CI | P value | ||
| Gender | 2.047 | 1.011‒4.146 | 0.047 | NA | NA | NA | |
| Course | 3.720 | 1.660‒8.336 | 0.001 | 3.364 | 1.145‒9.888 | 0.027 | |
| Throbbing | 0.616 | 0.233‒1.629 | 0.329 | ‒ | ‒ | ‒ | |
| Occipital | 2.106 | 1.051‒4.220 | 0.036 | 3.271 | 1.166‒9.181 | 0.024 | |
| Tempus | 0.658 | 0.347‒1.249 | 0.200 | ‒ | ‒ | ‒ | |
| Severe intensity | 2.566 | 1.504‒4.379 | 0.001 | 2.036 | 1.010‒4.104 | 0.047 | |
| Visual Aura symptoms | 0.368 | 0.108‒1.253 | 0.110 | ‒ | ‒ | ‒ | |
| Nausea/vomiting | 0.100 | 0.046‒0.218 | 0.000 | 0.094 | 0.034‒0.260 | 0.000 | |
| Photophobia/phonophobia | 0.061 | 0.018‒0.213 | 0.000 | 0.081 | 0.017‒0.385 | 0.002 | |
| Change of headache after activities | 0.396 | 0.225‒0.696 | 0.001 | 0.414 | 0.199‒0.863 | 0.019 | |
| Related to menstruation | 0.233 | 0.081‒0.675 | 0.007 | NA | NA | NA | |
| Alleviative way | 1.504 | 0.995‒2.274 | 0.053 | NA | NA | NA | |
| Variable | Tol | VIF |
|---|---|---|
| Gender | 0.861 | 1.162 |
| Course | 0.802 | 1.246 |
| Occipital | 0.923 | 1.083 |
| Severe intensity | 0.871 | 1.148 |
| Nausea/vomiting | 0.792 | 1.263 |
| Photophobia/phonophobia | 0.853 | 1.172 |
| Change of headache after activities | 0.903 | 1.107 |
| Related to menstruation | 0.861 | 1.161 |
| Alleviative way | 0.801 | 1.249 |
Tab 3 Collinearity analysis of each characteristic variable
| Variable | Tol | VIF |
|---|---|---|
| Gender | 0.861 | 1.162 |
| Course | 0.802 | 1.246 |
| Occipital | 0.923 | 1.083 |
| Severe intensity | 0.871 | 1.148 |
| Nausea/vomiting | 0.792 | 1.263 |
| Photophobia/phonophobia | 0.853 | 1.172 |
| Change of headache after activities | 0.903 | 1.107 |
| Related to menstruation | 0.861 | 1.161 |
| Alleviative way | 0.801 | 1.249 |
| 1 | Hagen K, Åsberg AN, Uhlig BL, et al. The epidemiology of headache disorders: a face-to-face interview of participants in HUNT4[J]. J Headache Pain, 2018, 19(1): 25. |
| 2 | Yu SY, Liu RZ, Zhao G, et al. The prevalence and burden of primary headaches in China: a population-based door-to-door survey[J]. Headache, 2012, 52(4): 582-591. |
| 3 | Yao CY, Wang Y, Wang LJ, et al. Burden of headache disorders in China, 1990—2017: findings from the Global Burden of Disease Study 2017[J]. J Headache Pain, 2019, 20(1): 102. |
| 4 | Saylor D, Steiner TJ. The global burden of headache[J]. Semin Neurol, 2018, 38(2): 182-190. |
| 5 | Takeshima T, Wan Q, Zhang Y, et al. Prevalence, burden, and clinical management of migraine in China, Japan, and South Korea: a comprehensive review of the literature[J]. J Headache Pain, 2019, 20(1): 111. |
| 6 | Leonardi M, Raggi A. A narrative review on the burden of migraine: when the burden is the impact on people's life[J]. J Headache Pain, 2019, 20(1): 41. |
| 7 | International Headache Society. Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211. |
| 8 | 尹梓名, 董钊, 孔祥勇. 基于国际头痛诊断标准的原发性头痛辅助决策系统[J]. 计算机应用研究, 2019, 36(02): 461-465. |
| 9 | Krawczyk B, Simić D, Simić S, et al. Automatic diagnosis of primary headaches by machine learning methods[J]. Central Eur J Med, 2013, 8(2): 157-165. |
| 10 | Khayamnia M, Yazdchi M, Heidari A, et al. Diagnosis of common deadaches using hybrid expert-based systems[J]. J Med Signals Sens, 2019, 9(3): 174-180. |
| 11 | Simić S, Banković Z, Villar JR, et al. A hybrid fuzzy clustering approach for diagnosing primary headache disorder[J]. Log J IGPL, 2021, 29(2): 220-235. |
| 12 | Jun FEH. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis[M]. New York: Springer Verlag, 2001. |
| 13 | GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1789-1858. |
| 14 | GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990—2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-480. |
| 15 | Martin VT, Penzien DB, Houle TT, et al. The predictive value of abbreviated migraine diagnostic criteria[J]. Headache, 2005, 45(9): 1102-1112. |
| 16 | Lipton RB, Dodick D, Sadovsky R, et al. A self-administered screener for migraine in primary care: the ID migraine validation study[J]. Neurology, 2003, 61(3): 375-382. |
| [1] | CHEN Rong, ZHANG Meng, ZHU Diqi, GUO Ying, SHEN Jie. Nomogram for predicting the risk of coronary artery lesions in patients with Kawasaki disease based on anti-neutrophil cytoplasmic antibodies [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 459-467. |
| [2] | LIU Chuxuan, ZUO Jiaxin, XIONG Ping. A nomogram based on ultrasound scoring parameters and clinical indicators for differentiating primary Sjὅgren′s syndrome from IgG4-related sialadenitis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 373-380. |
| [3] | DUN Yiting, ZHAO Jing, FENG Chengling, LI Xingjian, CUI Di, HAN Bangmin. Online risk calculator and nomogram prediction model for urinary incontinence after robot-assisted laparoscopic radical prostatectomy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1361-1371. |
| [4] | LU Jiaping, LIU Xing, ZHANG Linshan, ZHAO Lin, ZHANG Min, LI Xiaoying, LIU Yuejun. Relationship between abdominal fat area and first-phase insulin secretion function of pancreatic β-cells in patients with type 2 diabetes [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 42-50. |
| [5] | YANG Jingyu, CHEN Liubao, WANG Kangtai, YANG Xingzhi, YU Haitao. Establishment and evaluation of nomogram for differential diagnosis of systemic lupus erythematosus based on laboratory indications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 204-211. |
| [6] | DENG Qingsong, ZHANG Changqing, TAO Shicong. Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 145-160. |
| [7] | XUE Linlin, LI Binghan, CHANG Lixian, LI Weikun, LIU Chunyun, LIU Li. Construction and evaluation of a nomogram prediction model for bacterial infection in patients with decompensated hepatitis C cirrhosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 52-60. |
| [8] | DING Siqi, HUANG Xiaojun, ZHAN Feixia, TIAN Wotu, CAO Li. Two cases of hemiplegic migraine caused by ATP1A2 gene mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1158-1162. |
| [9] | Yekai WANG, Wei CHEN, Yinghui YANG, Jingze WU, Heping WANG, Yanzhen YAO, Zhoujun BAO. Establishment of a nomogram clinical scoring system for the risk of heterotopic ossification in patients undergoing surgery after fracture [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 166-172. |
| [10] | Ying XU, Yi-min CHU, Da-ming YANG, Ji LI, Hai-qin ZHANG, Hai-xia PENG. Construction of a metastasis prediction model of microsatellite instability-high colorectal cancer based on differentially expressed gene assembly [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1197-1206. |
| [11] | LÜ Heng-yu, HUANG Chen, XIA Xiang, ZHAO Gang. Establishment of a nomogram model predicting risk factors of postoperative complications after radical gastrectomy for gastric cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(7): 894-900. |
| [12] | HE Chun-ming, YIN Hang, TANG Jian, DING Yi-zong, FU Yu-jie, ZHAO Xiao-jing. Establishment and internal validation of a prognostic model for elderly patients after lung cancer surgery based on SEER [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1554-1561. |
| [13] | YUAN Xin1, JIANG Wei-qing1, REN Xiao1, LIU Chen2, WANG Yong-gang1. Vitamin D level in patients with menstrually related migraine [J]. , 2019, 39(4): 383-. |
| [14] | ZHAN Fei-xia1, CAO Chun-yan2, CAO Li1. Research progress of magnetoencephalography in neurological paroxysmal disease [J]. , 2018, 38(8): 979-. |
| [15] | ZHAO Xue1, 2*, WU Lin1*, GU Qin3. Expression of lactamase β in gastric cancer and its clinical significance [J]. , 2018, 38(10): 1212-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||