
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2022, Vol. 42 ›› Issue (2): 197-204.doi: 10.3969/j.issn.1674-8115.2022.02.010
• Evidence-based medicine • Previous Articles Next Articles
Yingchao TAN(
), Junyue YANG, Lina WANG(
)
Received:2021-09-22
Online:2022-02-28
Published:2022-03-17
Contact:
Lina WANG
E-mail:220193606@seu.edu.cn;lnwang@seu.edu.cn
Supported by:CLC Number:
Yingchao TAN, Junyue YANG, Lina WANG. Association between interleukin-1B-511C/T gene polymorphism and coronary atherosclerotic heart disease: a meta-analysis[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 197-204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.02.010
| Study included | Year | Area | Race | Source of control group | Genotype method | Matching(Y/N) | HWE(Y/N) | NOS score |
|---|---|---|---|---|---|---|---|---|
| LICASTRO, et al[ | 2004 | Italy | Caucasian | PB | PCR-RFLP | Y | Y | ≥7 |
| IACOVIELLO, et al[ | 2005 | Italy | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
| ZEE, et al[ | 2008 | US | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
| RIOS, et al[ | 2010 | Brazil | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
| COKER, et al[ | 2011 | Turkish | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
| REN, et al[ | 2015 | China | Chinese | HB | Not PCR-RFLP | N | Y | ≥7 |
| TABREZ, et al[ | 2017 | Saudi | Caucasian | HB | PCR-RFLP | N | Y | <7 |
| CHEN, et al[ | 2018 | China | Chinese | HB | Not PCR-RFLP | N | N | ≥7 |
| MA, et al[ | 2020 | China | Chinese | HB | PCR-RFLP | Y | Y | ≥7 |
Tab 1 Basic characteristics of the included studies
| Study included | Year | Area | Race | Source of control group | Genotype method | Matching(Y/N) | HWE(Y/N) | NOS score |
|---|---|---|---|---|---|---|---|---|
| LICASTRO, et al[ | 2004 | Italy | Caucasian | PB | PCR-RFLP | Y | Y | ≥7 |
| IACOVIELLO, et al[ | 2005 | Italy | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
| ZEE, et al[ | 2008 | US | Caucasian | PB | Not PCR-RFLP | Y | Y | ≥7 |
| RIOS, et al[ | 2010 | Brazil | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
| COKER, et al[ | 2011 | Turkish | Caucasian | HB | PCR-RFLP | N | Y | ≥7 |
| REN, et al[ | 2015 | China | Chinese | HB | Not PCR-RFLP | N | Y | ≥7 |
| TABREZ, et al[ | 2017 | Saudi | Caucasian | HB | PCR-RFLP | N | Y | <7 |
| CHEN, et al[ | 2018 | China | Chinese | HB | Not PCR-RFLP | N | N | ≥7 |
| MA, et al[ | 2020 | China | Chinese | HB | PCR-RFLP | Y | Y | ≥7 |
| Study included | Sample size/n | Genotype and allele frequency in case group/n | Genotype and allele frequency in control group/n | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Case group | Control group | CC | CT | TT | C | T | CC | CT | TT | C | T | |||
| LICASTRO, et al[ | 139 | 122 | 65 | 60 | 14 | 190 | 88 | 46 | 65 | 11 | 157 | 87 | ||
| IACOVIELLO, et al[ | 406 | 419 | 195 | 180 | 31 | 570 | 242 | 174 | 187 | 58 | 535 | 303 | ||
| ZEE, et al[ | 340 | 341 | 148 | 153 | 39 | 449 | 231 | 164 | 137 | 40 | 465 | 217 | ||
| RIOS, et al[ | 276 | 138 | 80 | 130 | 66 | 290 | 262 | 47 | 69 | 22 | 163 | 113 | ||
| COKER, et al[ | 167 | 235 | 59 | 72 | 36 | 190 | 144 | 77 | 113 | 45 | 267 | 203 | ||
| REN, et al[ | 325 | 342 | 95 | 152 | 78 | 342 | 308 | 114 | 155 | 73 | 383 | 301 | ||
| TABREZ, et al[ | 152 | 75 | 58 | 63 | 31 | 179 | 125 | 27 | 33 | 15 | 87 | 63 | ||
| CHEN, et al[ | 251 | 200 | 134 | 80 | 37 | 348 | 154 | 143 | 37 | 20 | 323 | 77 | ||
| MA, et al[ | 134 | 513 | 35 | 65 | 34 | 135 | 133 | 298 | 179 | 36 | 775 | 251 | ||
Tab 2 Distribution of IL-1B-511T/C locus genotype and allele frequency
| Study included | Sample size/n | Genotype and allele frequency in case group/n | Genotype and allele frequency in control group/n | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Case group | Control group | CC | CT | TT | C | T | CC | CT | TT | C | T | |||
| LICASTRO, et al[ | 139 | 122 | 65 | 60 | 14 | 190 | 88 | 46 | 65 | 11 | 157 | 87 | ||
| IACOVIELLO, et al[ | 406 | 419 | 195 | 180 | 31 | 570 | 242 | 174 | 187 | 58 | 535 | 303 | ||
| ZEE, et al[ | 340 | 341 | 148 | 153 | 39 | 449 | 231 | 164 | 137 | 40 | 465 | 217 | ||
| RIOS, et al[ | 276 | 138 | 80 | 130 | 66 | 290 | 262 | 47 | 69 | 22 | 163 | 113 | ||
| COKER, et al[ | 167 | 235 | 59 | 72 | 36 | 190 | 144 | 77 | 113 | 45 | 267 | 203 | ||
| REN, et al[ | 325 | 342 | 95 | 152 | 78 | 342 | 308 | 114 | 155 | 73 | 383 | 301 | ||
| TABREZ, et al[ | 152 | 75 | 58 | 63 | 31 | 179 | 125 | 27 | 33 | 15 | 87 | 63 | ||
| CHEN, et al[ | 251 | 200 | 134 | 80 | 37 | 348 | 154 | 143 | 37 | 20 | 323 | 77 | ||
| MA, et al[ | 134 | 513 | 35 | 65 | 34 | 135 | 133 | 298 | 179 | 36 | 775 | 251 | ||
| Subgroup | Genetic model | Number of study | OR (95% CI) | I2 value | PH value |
|---|---|---|---|---|---|
| Race | |||||
| Chinese | T vs C | 3 | 1.85 (1.02-3.36) | 93.3% | 0.000 |
| TT+CT vs CC | 3 | 2.16 (1.10-4.24) | 89.4% | 0.000 | |
| CC+CT vs TT | 3 | 1.99 (0.87-4.58) | 88.9% | 0.000 | |
| Caucasian | T vs C | 6 | 0.97 (0.82-1.16) | 57.6% | 0.038 |
| TT+CT vs CC | 6 | 0.94 (0.80-1.09) | 37.2% | 0.158 | |
| CC+CT vs TT | 6 | 1.00 (0.70-1.42) | 57.8% | 0.037 | |
| Source of control | |||||
| PB | T vs C | 3 | 0.89 (0.68-1.15) | 67.8% | 0.045 |
| TT+CT vs CC | 3 | 0.88 (0.63-1.24) | 66.2% | 0.052 | |
| CC+CT vs TT | 3 | 0.78 (0.48-1.29) | 57.7% | 0.094 | |
| HB | T vs C | 6 | 1.42 (1.00-2.03) | 89.0% | 0.000 |
| TT+CT vs CC | 6 | 1.50 (0.96-2.34) | 85.5% | 0.000 | |
| CC+CT vs TT | 6 | 1.59 (1.03-2.47) | 76.9% | 0.000 | |
| Genotype method | |||||
| PCR-RFLP | T vs C | 5 | 1.27 (0.78-2.06) | 91.4% | 0.000 |
| TT+CT vs CC | 5 | 1.24 (0.66-2.33) | 89.2% | 0.000 | |
| CC+CT vs TT | 5 | 1.63 (0.91-2.90) | 79.0% | 0.000 | |
| Not PCR-RFLP | T vs C | 4 | 1.14 (0.82-1.58) | 87.4% | 0.000 |
| TT+CT vs CC | 4 | 1.23 (0.82-1.84) | 83.9% | 0.000 | |
| CC+CT vs TT | 4 | 0.97 (0.62-1.49) | 72.3% | 0.000 | |
| Matching (Y/N) | |||||
| Y | T vs C | 4 | 1.20 (0.66-2.21) | 95.5% | 0.000 |
| TT+CT vs CC | 4 | 1.25 (0.63-2.50) | 93.3% | 0.000 | |
| CC+CT vs TT | 4 | 1.26 (0.47-3.36) | 92.4% | 0.000 | |
| N | T vs C | 5 | 1.22 (0.99-1.51) | 62.8% | 0.030 |
| TT+CT vs CC | 5 | 1.24 (0.91-1.71) | 65.0% | 0.022 | |
| CC+CT vs TT | 5 | 1.28 (1.03-1.59) | 0 | 0.707 | |
| NOS score | |||||
| ≥7 | T vs C | 8 | 1.24 (0.91-1.69) | 90.9% | 0.000 |
| TT+CT vs CC | 8 | 1.28 (0.89-1.86) | 87.5% | 0.000 | |
| CC+CT vs TT | 8 | 1.31 (0.85-2.02) | 83.0% | 0.000 | |
| <7 | T vs C | 1 | 0.96 (0.65-1.43) | ‒ | ‒ |
| TT+CT vs CC | 1 | 0.91 (0.51-1.62) | ‒ | ‒ | |
| CC+CT vs TT | 1 | 1.02 (0.51-2.04) | ‒ | ‒ | |
| HWE (Y/N) | |||||
| Y | T vs C | 8 | 1.15 (0.85-1.55) | 89.8% | 0.000 |
| TT+CT vs CC | 8 | 1.16 (0.81-1.64) | 85.1% | 0.000 | |
| CC+CT vs TT | 8 | 1.25 (0.80-1.93) | 82.8% | 0.000 | |
| N | T vs C | 1 | 1.86 (1.36-2.54) | ‒ | ‒ |
| TT+CT vs CC | 1 | 2.19 (1.48-3.25) | ‒ | ‒ | |
| CC+CT vs TT | 1 | 1.56 (0.87-2.78) | ‒ | ‒ | |
Tab 3 Subgroup analysis of the association between IL-1B-511C/T gene polymorphism and CHD
| Subgroup | Genetic model | Number of study | OR (95% CI) | I2 value | PH value |
|---|---|---|---|---|---|
| Race | |||||
| Chinese | T vs C | 3 | 1.85 (1.02-3.36) | 93.3% | 0.000 |
| TT+CT vs CC | 3 | 2.16 (1.10-4.24) | 89.4% | 0.000 | |
| CC+CT vs TT | 3 | 1.99 (0.87-4.58) | 88.9% | 0.000 | |
| Caucasian | T vs C | 6 | 0.97 (0.82-1.16) | 57.6% | 0.038 |
| TT+CT vs CC | 6 | 0.94 (0.80-1.09) | 37.2% | 0.158 | |
| CC+CT vs TT | 6 | 1.00 (0.70-1.42) | 57.8% | 0.037 | |
| Source of control | |||||
| PB | T vs C | 3 | 0.89 (0.68-1.15) | 67.8% | 0.045 |
| TT+CT vs CC | 3 | 0.88 (0.63-1.24) | 66.2% | 0.052 | |
| CC+CT vs TT | 3 | 0.78 (0.48-1.29) | 57.7% | 0.094 | |
| HB | T vs C | 6 | 1.42 (1.00-2.03) | 89.0% | 0.000 |
| TT+CT vs CC | 6 | 1.50 (0.96-2.34) | 85.5% | 0.000 | |
| CC+CT vs TT | 6 | 1.59 (1.03-2.47) | 76.9% | 0.000 | |
| Genotype method | |||||
| PCR-RFLP | T vs C | 5 | 1.27 (0.78-2.06) | 91.4% | 0.000 |
| TT+CT vs CC | 5 | 1.24 (0.66-2.33) | 89.2% | 0.000 | |
| CC+CT vs TT | 5 | 1.63 (0.91-2.90) | 79.0% | 0.000 | |
| Not PCR-RFLP | T vs C | 4 | 1.14 (0.82-1.58) | 87.4% | 0.000 |
| TT+CT vs CC | 4 | 1.23 (0.82-1.84) | 83.9% | 0.000 | |
| CC+CT vs TT | 4 | 0.97 (0.62-1.49) | 72.3% | 0.000 | |
| Matching (Y/N) | |||||
| Y | T vs C | 4 | 1.20 (0.66-2.21) | 95.5% | 0.000 |
| TT+CT vs CC | 4 | 1.25 (0.63-2.50) | 93.3% | 0.000 | |
| CC+CT vs TT | 4 | 1.26 (0.47-3.36) | 92.4% | 0.000 | |
| N | T vs C | 5 | 1.22 (0.99-1.51) | 62.8% | 0.030 |
| TT+CT vs CC | 5 | 1.24 (0.91-1.71) | 65.0% | 0.022 | |
| CC+CT vs TT | 5 | 1.28 (1.03-1.59) | 0 | 0.707 | |
| NOS score | |||||
| ≥7 | T vs C | 8 | 1.24 (0.91-1.69) | 90.9% | 0.000 |
| TT+CT vs CC | 8 | 1.28 (0.89-1.86) | 87.5% | 0.000 | |
| CC+CT vs TT | 8 | 1.31 (0.85-2.02) | 83.0% | 0.000 | |
| <7 | T vs C | 1 | 0.96 (0.65-1.43) | ‒ | ‒ |
| TT+CT vs CC | 1 | 0.91 (0.51-1.62) | ‒ | ‒ | |
| CC+CT vs TT | 1 | 1.02 (0.51-2.04) | ‒ | ‒ | |
| HWE (Y/N) | |||||
| Y | T vs C | 8 | 1.15 (0.85-1.55) | 89.8% | 0.000 |
| TT+CT vs CC | 8 | 1.16 (0.81-1.64) | 85.1% | 0.000 | |
| CC+CT vs TT | 8 | 1.25 (0.80-1.93) | 82.8% | 0.000 | |
| N | T vs C | 1 | 1.86 (1.36-2.54) | ‒ | ‒ |
| TT+CT vs CC | 1 | 2.19 (1.48-3.25) | ‒ | ‒ | |
| CC+CT vs TT | 1 | 1.56 (0.87-2.78) | ‒ | ‒ | |
| 1 | MATHERS C D, LONCAR D. Projections of global mortality and burden of disease from 2002 to 2030[J]. PLoS Med, 2006, 3(11): e442. |
| 2 | MALAKAR A K, CHOUDHURY D, HALDER B, et al. A review on coronary artery disease, its risk factors, and therapeutics[J]. J Cell Physiol, 2019, 234(10): 16812-16823. |
| 3 | CAMPBELL T C, PARPIA B, CHEN J. Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study[J]. Am J Cardiol, 1998, 82(10B): 18T-21T. |
| 4 | ERBEL R, GÖRGE G. New insights in pathogenesis and etiology of coronary artery disease[J]. Dtsch Med Wochenschr, 2014, 139(Suppl 1): S4-S8. |
| 5 | BEDNARSKA J, BEDNARSKA-CHABOWSKA D, ADAMIEC-MROCZEK J. Coronary artery disease: new insights into revascularization treatment of diabetic patients[J]. Adv Clin Exp Med, 2017, 26(7): 1163-1167. |
| 6 | STEIN R, FERRARI F, SCOLARI F.Genetics, dyslipidemia, and disease cardiovascular: new insights[J]. Curr Cardiol Rep, 2019, 21(8): 68. |
| 7 | MARTINEZ P F, OKOSHI M P. Genetic risk in coronary artery disease[J]. Arq Bras Cardiol, 2018, 111(1): 62-63. |
| 8 | MYERS R H, KIELY D K, CUPPLES L A, et al. Parental history is an independent risk factor for coronary artery disease: the Framingham Study[J]. Am Heart J, 1990, 120(4): 963-969. |
| 9 | BORGHINI A, ANDREASSI M G. Genetic polymorphisms offer insight into the causal role of microRNA in coronary artery disease[J]. Atherosclerosis, 2018, 269: 63-70. |
| 10 | MOREIRA D M, DA SILVA R L, VIEIRA J L, et al. Role of vascular inflammation in coronary artery disease: potential of anti-inflammatory drugs in the prevention of atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease[J]. Am J Cardiovasc Drugs, 2015, 15(1): 1-11. |
| 11 | DINARELLO C A. Biologic basis for interleukin-1 in disease[J]. Blood, 1996, 87(6): 2095-2147. |
| 12 | DHOREPATIL A, BALL S, GHOSH R K, et al. Canakinumab: promises and future in cardiometabolic diseases and malignancy[J]. Am J Med, 2019, 132(3): 312-324. |
| 13 | TABREZ S, JABIR N R, FIROZ C K, et al. Estimation of interleukin-1β promoter (-31 C/T and -511 T/C) polymorphisms and its level in coronary artery disease patients[J]. J Cell Biochem, 2017, 118(9): 2977-2982. |
| 14 | CHIBANA H, KAJIMOTO H, UENO T, et al. Interleukin-1β is associated with coronary endothelial dysfunction in patients with mTOR-inhibitor-eluting stent implantation[J]. Heart Vessels, 2017, 32(7): 823-832. |
| 15 | RIOS D L S, CERQUEIRA C C S, BONFIM-SILVA R, et al. Interleukin-1β and interleukin-6 gene polymorphism associations with angiographically assessed coronary artery disease in Brazilians[J]. Cytokine, 2010, 50(3): 292-296. |
| 16 | MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from retrospective studies of disease[J]. J Natl Cancer Inst, 1959, 22(4): 719-748. |
| 17 | LICASTRO F, CHIAPPELLI M, CALDARERA C M, et al. The concomitant presence of polymorphic alleles of interleukin-1β, interleukin-6 and apolipoprotein E is associated with an increased risk of myocardial infarction in elderly men. Results from a pilot study[J]. Mech Ageing Dev, 2004, 125(8): 575-579. |
| 18 | IACOVIELLO L, DI CASTELNUOVO A, GATTONE M, et al. Polymorphisms of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro[J]. Arterioscler Thromb Vasc Biol, 2005, 25(1): 222-227. |
| 19 | ZEE R Y L, HENNESSEY H, MICHAUD S E, et al. Genetic variants within the interleukin-1 gene cluster, and risk of incident myocardial infarction, and ischemic stroke: a nested case-control approach[J]. Atherosclerosis, 2008, 201(1): 124-129. |
| 20 | COKER A, ARMAN A, SOYLU O, et al. Lack of association between IL-1 and IL-6 gene polymorphisms and myocardial infarction in Turkish population[J]. Int J Immunogenet, 2011, 38(3): 201-208. |
| 21 | REN B J, SHE Q. Study on the association between IL-1β, IL-8 and IL-10 gene polymorphisms and risk of coronary artery disease[J]. Int J Clin Exp Med, 2015, 8(5): 7937-7943. |
| 22 | CHEN L, LU F, WANG Z, et al. Influence of interleukin-1β gene polymorphism on the risk of myocardial infarction complicated with ischemic stroke[J]. Exp Ther Med, 2018, 16(6): 5166-5170. |
| 23 | MA L J, SU H, WANG Y, et al. Interleukin-1β (IL-1β) C-511T polymorphism is associated with susceptibility to coronary artery disease in type 2 diabetic patients[J]. Eur J Inflamm, 2020, 18(5): 1-12. |
| 24 | MUSUNURU K, KATHIRESAN S. Genetics of common, complex coronary artery disease[J]. Cell, 2019, 177(1): 132-145. |
| 25 | TABAEI S, MOTALLEBNEZHAD M, TABAEE S S. Systematic review and meta-analysis of association of polymorphisms in inflammatory cytokine genes with coronary artery disease[J]. Inflamm Res, 2020, 69(10): 1001-1013. |
| 26 | VOHNOUT B, DI CASTELNUOVO A, TROTTA R, et al. Interleukin-1 gene cluster polymorphisms and risk of coronary artery disease[J]. Haematologica, 2003, 88(1): 54-60. |
| 27 | 赵娜, 王兴宁, 张瑞. 中国多省份人群IL-1B-511C/T和IL1RN+8006T/C单核苷酸多态性与冠心病相关性的meta分析[J]. 细胞与分子免疫学杂志, 2017, 33(10): 1409-1414. |
| 28 | 罗涛, 王璐, 田恬, 等. 匹配在观察性研究中的作用: 有向无环图视角[J]. 中华流行病学杂志, 2021, 42(4): 740-744. |
| 29 | 刘宝花. 病例对照研究在健康管理科研中的理论、设计和应用[J]. 中华健康管理学杂志, 2019, 13(4): 360-366. |
| [1] | ZHU Hanyi, SHI Huan, YU Chuangqi, ZHENG Lingyan. Preliminary study on early warning value and mechanism of interleukin-1β in extremely severe oral and maxillofacial space infections [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 661-672. |
| [2] | ZHAO Jianlei, ZHAO Jingqi, LIU Chang, HUANG Jingjun, JIN Shengyuan. Efficacy of hydrodynamic debridement in the treatment of burns: a systematic review of randomized controlled trials [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 614-623. |
| [3] | SUN Chenyin, WU Baichuan, ZHANG Huifeng, FANG Yiru, PENG Daihui. Evaluation of circadian rhythms in depression by using actigraphy: a systematic review and meta-analysis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 606-616. |
| [4] | YANG Yue, HE Kaiju, ZONG Jiahao, YANG Ziyi, WU Xiangsong, GONG Wei. Diagnostic value of cell-free DNA to biliary tract cancers: a meta-analysis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1175-1185. |
| [5] | CHEN Hui, ZHU Weiyi, YAO Yijin. A meta-analysis of the effects of levothyroxine dose adjustment on maternal and infant outcomes in pregnant women with hypothyroidism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 906-915. |
| [6] | MA Zhuoran, YUAN Ancai, JIANG Huiru, CHEN Xiaoyu, ZHANG Wei, PU Jun. Meta analysis of correlation between lipid accumulation product and hypertension in Chinese adults [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 466-473. |
| [7] | YANG Ling, HOU Lili, ZHAO Yan, CHEN Weihong, ZHANG Jinfeng, MAO Yan. A meta-analysis of prevalence of mouth opening restriction in patients with oral cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 61-69. |
| [8] | FANG Fang, TAI Rui, YU Qian, ZHANG Yaqing. Effect of prehabilitation on outcomes in patients undergoing elective gastrointestinal surgery: a systematic review [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 70-78. |
| [9] | CHEN Weihong, HOU Lili, YANG Ling, MAO Yan, ZHANG Jinfeng. Efficacy of preventive intervention of cryotherapy on radiation-induced oral mucositis in head and neck cancer: a meta-analysis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 635-645. |
| [10] | Peipei CHENG, Yasong DU. Research progress of interleukin-1 receptor accessory protein in the pathogenesis of neuropsychiatric diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(1): 101-106. |
| [11] | Dewei QIAN, Ren ZHOU, Lichun GUAN, Hang ZHANG, Min YU. Meta-analysis of impacts of inhaled nitric oxide on postoperative renal injury and hemorrhage [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(1): 95-100. |
| [12] | Yi WANG, Cheng CHENG, Hong-yan SHEN, Hong-yan GAO, Yue-ning DAI, Zheng-hui YI. Meta-analysis of efficacy of transcranial magnetic stimulation for the treatment of cognitive function and behavioral and psychological symptoms of dementia in patients with Alzheimer′s disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 931-941. |
| [13] | Qian ZHAO, Lin GAO, Chang-qian WANG, Jun-feng ZHANG, Hui-li ZHANG, Yang ZHUO. Changes and significance of CX3CR1 expression in peripheral blood monocyte subsets in patients with coronary atherosclerotic heart disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 328-333. |
| [14] | Yu-jie XIE, Li-juan XIE, Tian-wen ZHU, Yi-wen WANG. Study on interleukin-10 receptor A gene mutations-induced neonatal very early onset inflammatory bowel disease in 2 infants [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 409-412. |
| [15] | Jie LIU, Xin-min XIE, Xue-mei ZHI, Jing-yi LU. Meta-analysis of the relationship between sleep duration and the risk of diabetic retinopathy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1502-1508. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||