Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (8): 1062-1069.doi: 10.3969/j.issn.1674-8115.2022.08.011
• Clinical research • Previous Articles
ZHAO Keke(), JIANG Beibei(
), ZHANG Lu, WANG Lingyun, ZHANG Yaping, XIE Xueqian(
)
Received:
2022-04-17
Accepted:
2022-07-25
Online:
2022-08-28
Published:
2022-10-08
Contact:
XIE Xueqian
E-mail:1797673460@qq.com;jennifer.chiang@hot mail.com;xiexueqian@hotmail.com
Supported by:
CLC Number:
ZHAO Keke, JIANG Beibei, ZHANG Lu, WANG Lingyun, ZHANG Yaping, XIE Xueqian. Feasibility of ultra-low-dose noncontrast CT based on deep learning image reconstruction to evaluate chest lesions[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1062-1069.
Variable | Included patient | P value | |
---|---|---|---|
0.07 mSv (n=40) | 0.14 mSv (n=40) | ||
Age/year | 64±9 | 61±12 | 0.165 |
Gender/n (%) | |||
Male | 28 (52) | 26 (48) | 0.633 |
Female | 12 (46) | 14 (54) | |
BMI/(kg·m-2) | 23.14±3.61 | 22.30±3.03 | 0.173 |
<18.5 | 3 | 4 | 0.243 |
≥18.5 and <25.0 | 26 | 31 | |
≥25.0 | 11 | 5 | |
Lung target tumor lesion/n | |||
Malignant | 13 | 15 | 0.377 |
Benign or no histological result | 9 | 17 | |
Mediastinal lymph node/n | |||
Malignant | 8 | 3 | 0.793 |
Benign or no histological result | 4 | 2 | |
Hilar lymph node/n | |||
Malignant | 2 | 3 | 0.294 |
Benign or no histological result | 3 | 1 |
Tab 1 Basic characteristics of the included patients
Variable | Included patient | P value | |
---|---|---|---|
0.07 mSv (n=40) | 0.14 mSv (n=40) | ||
Age/year | 64±9 | 61±12 | 0.165 |
Gender/n (%) | |||
Male | 28 (52) | 26 (48) | 0.633 |
Female | 12 (46) | 14 (54) | |
BMI/(kg·m-2) | 23.14±3.61 | 22.30±3.03 | 0.173 |
<18.5 | 3 | 4 | 0.243 |
≥18.5 and <25.0 | 26 | 31 | |
≥25.0 | 11 | 5 | |
Lung target tumor lesion/n | |||
Malignant | 13 | 15 | 0.377 |
Benign or no histological result | 9 | 17 | |
Mediastinal lymph node/n | |||
Malignant | 8 | 3 | 0.793 |
Benign or no histological result | 4 | 2 | |
Hilar lymph node/n | |||
Malignant | 2 | 3 | 0.294 |
Benign or no histological result | 3 | 1 |
Item | r | ||
---|---|---|---|
ASIR-V-80% vs enhanced CT | DLIR-M vs enhanced CT | DLIR-H vs enhanced CT | |
All lung target tumor lesion | 0.988 | 0.987 | 0.990 |
Malignant | 0.985 | 0.980 | 0.986 |
Benign or no histological result | 0.991 | 0.993 | 0.994 |
GGN (diameter≤1 cm) | 0.905 | 0.906 | 0.969 |
Mediastinal lymph node | 0.969 | 0.957 | 0.977 |
Malignant | 0.952 | 0.930 | 0.955 |
Benign or no histological result | 0.999 | 0.997 | 1.000 |
Hilar lymph node | 0.972 | 0.994 | 0.994 |
Tab 2 Pearson's correlation coefficients of target lesions measured on ultra-low-dose CT and enhanced CT images
Item | r | ||
---|---|---|---|
ASIR-V-80% vs enhanced CT | DLIR-M vs enhanced CT | DLIR-H vs enhanced CT | |
All lung target tumor lesion | 0.988 | 0.987 | 0.990 |
Malignant | 0.985 | 0.980 | 0.986 |
Benign or no histological result | 0.991 | 0.993 | 0.994 |
GGN (diameter≤1 cm) | 0.905 | 0.906 | 0.969 |
Mediastinal lymph node | 0.969 | 0.957 | 0.977 |
Malignant | 0.952 | 0.930 | 0.955 |
Benign or no histological result | 0.999 | 0.997 | 1.000 |
Hilar lymph node | 0.972 | 0.994 | 0.994 |
Item | Arithmetic mean ( | ||
---|---|---|---|
ASIR-V-80% vs enhanced CT | DLIR-M vs enhanced CT | DLIR-H vs enhanced CT | |
All lung target tumor lesion | 8.5% (-3.3%‒20.3%) | 8.5% (-4.2%‒21.3%) | 4.3% (-5.7%‒14.3%) |
Malignant | 8.7% (-2.4%‒19.7%) | 10.3% (-3.7%‒24.3%) | 4.8% (-5.5%‒15.2%) |
Benign or no histological result | 8.3% (-4.4%‒21.0%) | 6.7% (-3.6%‒17.0%) | 3.8% (-5.9%‒13.5%) |
GGN (diameter≤1 cm) | 14.4% (-4.4%‒33.2%) | 16.3% (-4.1%‒36.7%) | 7.0% (-5.7%‒19.7%) |
Mediastinal lymph node | 9.7% (-6.0%‒25.3%) | 8.8% (-9.9%‒27.5%) | 5.1% (-9.1%‒19.3%) |
Malignant | 11.8% (-6.1%‒29.7%) | 10.5% (-11.3%‒32.4%) | 6.3% (-10.9%‒23.6%) |
Benign or no histological result | 5.8% (-0.4%‒11.9%) | 5.7% (-3.9%‒15.2%) | 2.8% (-0.2%‒5.8%) |
Hilar lymph node | 20.2% (-1.2%‒41.5%) | 23.4% (13.5%‒33.2%) | 18.3% (8.8%‒27.9%) |
Tab 3 Bland-Altman analysis of the variability of measured values of target lesions on ultra-low-dose CT and enhanced CT images
Item | Arithmetic mean ( | ||
---|---|---|---|
ASIR-V-80% vs enhanced CT | DLIR-M vs enhanced CT | DLIR-H vs enhanced CT | |
All lung target tumor lesion | 8.5% (-3.3%‒20.3%) | 8.5% (-4.2%‒21.3%) | 4.3% (-5.7%‒14.3%) |
Malignant | 8.7% (-2.4%‒19.7%) | 10.3% (-3.7%‒24.3%) | 4.8% (-5.5%‒15.2%) |
Benign or no histological result | 8.3% (-4.4%‒21.0%) | 6.7% (-3.6%‒17.0%) | 3.8% (-5.9%‒13.5%) |
GGN (diameter≤1 cm) | 14.4% (-4.4%‒33.2%) | 16.3% (-4.1%‒36.7%) | 7.0% (-5.7%‒19.7%) |
Mediastinal lymph node | 9.7% (-6.0%‒25.3%) | 8.8% (-9.9%‒27.5%) | 5.1% (-9.1%‒19.3%) |
Malignant | 11.8% (-6.1%‒29.7%) | 10.5% (-11.3%‒32.4%) | 6.3% (-10.9%‒23.6%) |
Benign or no histological result | 5.8% (-0.4%‒11.9%) | 5.7% (-3.9%‒15.2%) | 2.8% (-0.2%‒5.8%) |
Hilar lymph node | 20.2% (-1.2%‒41.5%) | 23.4% (13.5%‒33.2%) | 18.3% (8.8%‒27.9%) |
Influential factor | Difference of measured values (ASIR-V-80% and enhanced CT) | Difference of measured values (DLIR-M and enhanced CT) | Difference of measured values (DLIR-H and enhanced CT) | |||
---|---|---|---|---|---|---|
β | P value | β | P value | β | P value | |
BMI | -0.003 | 0.976 | -0.013 | 0.913 | -0.042 | 0.717 |
Age | -0.099 | 0.392 | -0.014 | 0.631 | -0.049 | 0.675 |
Gender | -0.135 | 0.251 | -0.095 | 0.416 | -0.105 | 0.370 |
CT dose | -0.084 | 0.463 | -0.073 | 0.525 | -0.077 | 0.506 |
Lesion type | 0.256 | 0.034 | 0.257 | 0.033 | 0.287 | 0.018 |
Lesion type (without hilar lymph node) | 0.013 | 0.919 | -0.049 | 0.702 | -0.027 | 0.839 |
Histological result | 0.175 | 0.143 | 0.203 | 0.088 | 0.142 | 0.233 |
Tab 4 Multiple linear regression analysis of the influential factors on the differences between the measured values of ultra-low-dose CT and enhanced CT of target lesions
Influential factor | Difference of measured values (ASIR-V-80% and enhanced CT) | Difference of measured values (DLIR-M and enhanced CT) | Difference of measured values (DLIR-H and enhanced CT) | |||
---|---|---|---|---|---|---|
β | P value | β | P value | β | P value | |
BMI | -0.003 | 0.976 | -0.013 | 0.913 | -0.042 | 0.717 |
Age | -0.099 | 0.392 | -0.014 | 0.631 | -0.049 | 0.675 |
Gender | -0.135 | 0.251 | -0.095 | 0.416 | -0.105 | 0.370 |
CT dose | -0.084 | 0.463 | -0.073 | 0.525 | -0.077 | 0.506 |
Lesion type | 0.256 | 0.034 | 0.257 | 0.033 | 0.287 | 0.018 |
Lesion type (without hilar lymph node) | 0.013 | 0.919 | -0.049 | 0.702 | -0.027 | 0.839 |
Histological result | 0.175 | 0.143 | 0.203 | 0.088 | 0.142 | 0.233 |
1 | EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. |
2 | SHI L, TASHIRO S. Estimation of the effects of medical diagnostic radiation exposure based on DNA damage[J]. J Radiat Res, 2018, 59(suppl_2): ii121-ii129. |
3 | WOOD D E, KAZEROONI E A, BAUM S L, et al. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16(4): 412-441. |
4 | MAZLOUMI M, VAN GOMPEL G, KERSEMANS V, et al. The presence of contrast agent increases organ radiation dose in contrast-enhanced CT[J]. Eur Radiol, 2021, 31(10): 7540-7549. |
5 | PERISINAKIS K, SEIMENIS I, TZEDAKIS A, et al. Radiation burden and associated cancer risk for a typical population to be screened for lung cancer with low-dose CT: a phantom study[J]. Eur Radiol, 2018, 28(10): 4370-4378. |
6 | KIM Y, KIM Y K, LEE B E, et al. Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction[J]. AJR Am J Roentgenol, 2015, 204(6): 1197-1202. |
7 | JIANG B, LI N, SHI X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT[J]. Radiology, 2022, 303(1): 202-212. |
8 | SHIRI I, AKHAVANALLAF A, SANAAT A, et al. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network[J]. Eur Radiol, 2021, 31(3): 1420-1431. |
9 | CABALLERO B. Humans against obesity: who will win?[J]. Adv Nutr, 2019, 10(suppl_1): S4-S9. |
10 | SUN J, LI H, WANG B, et al. Application of a deep learning image reconstruction (DLIR) algorithm in head CT imaging for children to improve image quality and lesion detection[J]. BMC Med Imaging, 2021, 21(1): 108. |
11 | KIM J H, YOON H J, LEE E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise[J]. Korean J Radiol, 2021, 22(1): 131-138. |
12 | PARAKH A, CAO J, PIERCE T T, et al. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations[J]. Eur Radiol, 2021, 31(11): 8342-8353. |
13 | NAM J G, AHN C, CHOI H, et al. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques[J]. Eur Radiol, 2021, 31(7): 5139-5147. |
14 | JENSEN C T, LIU X, TAMM E P, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1): 50-57. |
15 | BENZ D C, BENETOS G, RAMPIDIS G, et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy[J]. J Cardiovasc Comput Tomogr, 2020, 14(5): 444-451. |
16 | NODA Y, KAGA T, KAWAI N, et al. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection[J]. Br J Radiol, 2021, 94(1121): 20201329. |
17 | JENSEN C T, GUPTA S, SALEH M M, et al. Reduced-dose deep learning reconstruction for abdominal CT of liver metastases[J]. Radiology, 2022, 303(1): 90-98. |
18 | 蒋蓓蓓, 张亚平, 张琳, 等. 深度卷积神经网络对≤3 cm的亚实性肺腺癌CT图像病理学分型预测的可视化研究[J]. 上海交通大学学报(医学版), 2019, 39(9): 1045-1051. |
JIANG B B, ZHANG Y P, ZHANG L, et al. A visualization study of deep convolutional neural network to classify the pathological type of sub-soild pulmonary adenocarcinoma of ≤3 cm based on CT images [J]. J Shanghai Jiao Tong Univ (Med Sci), 2019, 39(9): 1045-1051. |
[1] | LIU Ziyang, WANG Xiaowen, CHEN Li. lncRNA GK-IT1 influences the carcinogenesis of non-small cell lung cancer cells through regulating aldolase A [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 591-601. |
[2] | LIN Jiaxi, WANG Shengjia, ZHAO Xin, GAO Xin, YIN Minyue, ZHU Jinzhou. Development of endoscopic image classification models of Barrett's esophagus based on deep convolutional neural networks [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 653-659. |
[3] | LU Wenqing, MENG Zhouwenli, YU Yongfeng, LU Shun. Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 535-544. |
[4] | CHEN Liqi, XUE Zhuowei, WU Qingkai. Review of MRI-based three-dimensional digital model reconstruction of female pelvic floor organs [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 381-386. |
[5] | Yu ZHANG, Xiaoyuan WU, Lihua GUAN, Yiyuan LIU, Xingyue PENG, Haiyan XIE, Wei HU, Keke HAO, Ning XIA, Guojun LU, Zhibo HOU. Application of high-throughput drug sensitivity screening system in the treatment of non-small cell lung cancer with malignant pleural effusion [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(1): 82-89. |
[6] | Bing-qian ZHOU, Li HAN, Zhe-yi CHEN, Shi-yu CHEN, Ying-xia ZHENG. Expression of protein arginine methyltransferase 5 in lung cancer and its mechanism of promoting lung cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1009-1016. |
[7] | Xu-xin-yi LING, Yao ZHANG, Hua ZHONG. Research progress in screening non-small cell lung cancer patients who will benefit from immunotherapy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1114-1119. |
[8] | Yan-qi HE, Rui CHI, Meng-ping CHEN, Si CHEN, Chun-liang LIU, Yun-xia LIU, Hai-peng SUN. Function of branched-chain amino acid catabolism in lung cancer cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 858-864. |
[9] | Yun-fang MA, Li-na PAN, Zhen LI, Bei-li GAO, Jia-an HU, Zhi-hong XU. Exploratory study on downregulation of PD-L1 in KRAS G12V-mutant non-small cell lung cancer cells by selumetinib [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 741-748. |
[10] | Jian-hua XU, Ping JIANG, Jiong DENG. Expression and significance of ATP-binding cassette superfamily G member 2 in lung cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 830-833. |
[11] | ZOU Chen1, 2, XU Run-hao1, 3, ZHANG Hong2, MA Zhan2, CHEN Li2, ZHANG Jie3, LI Min3, ZHANG Shu-lin1. Potential roles of small metabolites in the differential diagnosis between lung cancer and pneumonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1041-1047. |
[12] | HE Chun-ming, YIN Hang, ZHENG Jia-jie, TANG Jian, FU Yu-jie, ZHAO Xiao-jing. Immunotherapy for lung cancer: immunosuppressive cells and intrapulmonary immunity [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1137-1142. |
[13] | LU Yan-qiao, SHEN Lan, HE Ben. Application of artificial intelligence in assisted diagnosis and treatment of cardiovascular disease [J]. , 2020, 40(2): 259-. |
[14] | XU Shu-lin, WU Jing, LOU Jia-tao. Correlation analysis of lung cancer and anemia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1500-1504. |
[15] | HE Chun-ming, YIN Hang, TANG Jian, DING Yi-zong, FU Yu-jie, ZHAO Xiao-jing. Establishment and internal validation of a prognostic model for elderly patients after lung cancer surgery based on SEER [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1554-1561. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 690
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 563
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||