Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (8): 1145-1150.doi: 10.3969/j.issn.1674-8115.2022.08.021
• Review • Previous Articles
A Tingxi(), SHAO Chunyi, FU Yao()
Received:
2022-02-07
Accepted:
2022-05-23
Online:
2022-08-12
Published:
2022-08-12
Contact:
FU Yao
E-mail:atingxi@126.com;fuyaofy@sina.com
Supported by:
CLC Number:
A Tingxi, SHAO Chunyi, FU Yao. Research progress on the role of regulatory T cells in ocular surface diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1145-1150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.08.021
1 | GERSHON R K, KONDO K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J]. Immunology, 1970, 18(5): 723-737. |
2 | SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164. |
3 | GALLETTI J G, GUZMÁN M, GIORDANO M N. Mucosal immune tolerance at the ocular surface in health and disease[J]. Immunology, 2017, 150(4): 397-407. |
4 | GALLETTI J G, DE PAIVA C S. The ocular surface immune system through the eyes of aging[J]. Ocul Surf, 2021, 20: 139-162. |
5 | HORI J, YAMAGUCHI T, KEINO H, et al. Immune privilege in corneal transplantation[J]. Prog Retin Eye Res, 2019, 72: 100758. |
6 | GROVER P, GOEL P N, GREENE M I. Regulatory T cells: regulation of identity and function[J]. Front Immunol, 2021, 12: 750542. |
7 | FONTENOT J D, GAVIN M A, RUDENSKY A Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003, 4(4): 330-336. |
8 | KOMATSU N, OKAMOTO K, SAWA S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis[J]. Nat Med, 2014, 20(1): 62-68. |
9 | LIU W H, PUTNAM A L, ZHOU X Y, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells[J]. J Exp Med, 2006, 203(7): 1701-1711. |
10 | SHEVACH E M, THORNTON A M. tTregs, pTregs, and iTregs: similarities and differences[J]. Immunol Rev, 2014, 259(1): 88-102. |
11 | RAFFIN C, VO L T, BLUESTONE J A. Treg cell-based therapies: challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3): 158-172. |
12 | SANJABI S, OH S A, LI M O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection[J]. Cold Spring Harb Perspect Biol, 2017, 9(6): a022236. |
13 | WANG R X, YU C R, DAMBUZA I M, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641. |
14 | CHINEN T, KANNAN A K, LEVINE A G, et al. An essential role for the IL-2 receptor in T reg cell function[J]. Nat Immunol, 2016, 17(11): 1322-1333. |
15 | WING J B, ISE W, KUROSAKI T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4[J]. Immunity, 2014, 41(6): 1013-1025. |
16 | YAN Y P, ZHANG G X, GRAN B, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J]. J Immunol, 2010, 185(10): 5953-5961. |
17 | BAUCHÉ D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gut-resident macrophages during group 3 innate lymphoid cell-driven colitis[J]. Immunity, 2018, 49(2): 342-352.e5. |
18 | ALMAHARIQ M, MEI F C, WANG H, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression[J]. Biochem J, 2015, 465(2): 295-303. |
19 | CAO X F, CAI S F, FEHNIGER T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity, 2007, 27(4): 635-646. |
20 | MUÑOZ-ROJAS A R, MATHIS D. Tissue regulatory T cells: regulatory chameleons[J]. Nat Rev Immunol, 2021, 21(9): 597-611. |
21 | CRAIG J P, NICHOLS K K, AKPEK E K, et al. TFOS DEWS Ⅱ definition and classification report[J]. Ocular Surf, 2017, 15(3): 276-283. |
22 | BRON A J, DE PAIVA C S, CHAUHAN S K, et al. TFOS DEWS Ⅱ pathophysiology report[J]. Ocular Surf, 2017, 15(3): 438-510. |
23 | SCHAUMBURG C S, SIEMASKO K F, DE PAIVA C S, et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis[J]. J Immunol, 2011, 187(7): 3653-3662. |
24 | CHEN Y H, CHAUHAN S K, LEE H S, et al. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2457-2464. |
25 | CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252. |
26 | SIEMASKO K F, GAO J P, CALDER V L, et al. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation[J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5434-5440. |
27 | RATAY M L, GLOWACKI A J, BALMERT S C, et al. Treg-recruiting microspheres prevent inflammation in a murine model of dry eye disease[J]. J Control Release, 2017, 258: 208-217. |
28 | SINGH R B, BLANCO T, MITTAL S K, et al. Pigment epithelium-derived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease[J]. Am J Pathol, 2021, 191(4): 720-729. |
29 | YAO G H, QI J J, LIANG J, et al. Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26): 8253-8265. |
30 | XU J J, WANG D D, LIU D Y, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome[J]. Blood, 2012, 120(15): 3142-3151. |
31 | NIETO J E, CASANOVA I, SERNA-OJEDA J C, et al. Increased expression of TLR4 in circulating CD4+ T cells in patients with allergic conjunctivitis and in vitro attenuation of Th2 inflammatory response by α-MSH[J]. Int J Mol Sci, 2020, 21(21): 7861. |
32 | GALICIA-CARREÓN J, SANTACRUZ C, AYALA-BALBOA J, et al. An imbalance between frequency of CD4+CD25+FOXP3+ regulatory T cells and CCR4+ and CCR9+ circulating helper T cells is associated with active perennial allergic conjunctivitis[J]. Clin Dev Immunol, 2013, 2013: 919742. |
33 | SUMI T, FUKUSHIMA A, FUKUDA K, et al. Thymus-derived CD4+ CD25+ T cells suppress the development of murine allergic conjunctivitis[J]. Int Arch Allergy Immunol, 2007, 143(4): 276-281. |
34 | FUKUSHIMA A, SUMI T, ISHIDA W, et al. Depletion of thymus-derived CD4+CD25+ T cells abrogates the suppressive effects of alpha-galactosylceramide treatment on experimental allergic conjunctivitis[J]. Allergol Int, 2008, 57(3): 241-246. |
35 | YU W C, GENG S, SUO Y Z, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1[J]. Cell Rep, 2018, 25(9): 2379-2389.e3. |
36 | LOBO A M, AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf, 2019, 17(1): 40-49. |
37 | SEHRAWAT S, SUVAS S, SARANGI P P, et al. In vitro-generated antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions[J]. J Virol, 2008, 82(14): 6838-6851. |
38 | SUVAS S, AZKUR A K, KIM B S, et al. CD4+ CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions[J]. J Immunol, 2004, 172(7): 4123-4132. |
39 | BHELA S, VARANASI S K, JAGGI U, et al. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions[J]. J Immunol, 2017, 199(4): 1342-1352. |
40 | VARANASI S K, REDDY P B J, BHELA S, et al. Azacytidine treatment inhibits the progression of herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol, 2017, 91(7): e02367-e02316. |
41 | LAM A J, HOEPPLI R E, LEVINGS M K. Harnessing advances in T regulatory cell biology for cellular therapy in transplantation[J]. Transplantation, 2017, 101(10): 2277-2287. |
42 | CHAUHAN S K, SABAN D R, LEE H K, et al. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation[J]. J Immunol, 2009, 182(1): 148-153. |
43 | HORI J, TANIGUCHI H, WANG M C, et al. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6556-6565. |
44 | INOMATA T, HUA J, DI ZAZZO A, et al. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection[J]. Sci Rep, 2016, 6: 39924. |
45 | INOMATA T, HUA J, NAKAO T, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection[J]. Cornea, 2018, 37(1): 95-101. |
46 | HUA J, INOMATA T, CHEN Y H, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance[J]. Sci Rep, 2018, 8(1): 7059. |
47 | TAHVILDARI M, OMOTO M, CHEN Y H, et al. In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation[J]. Transplantation, 2016, 100(3): 525-532. |
48 | SHAO C Y, CHEN Y H, NAKAO T, et al. Local delivery of regulatory T cells promotes corneal allograft survival[J]. Transplantation, 2019, 103(1): 182-190. |
49 | LI J T, TAN J, MARTINO M M, et al. Regulatory T-cells: potential regulator of tissue repair and regeneration[J]. Front Immunol, 2018, 9: 585. |
50 | SCHIAFFINO S, PEREIRA M G, CICILIOT S, et al. Regulatory T cells and skeletal muscle regeneration[J]. FEBS J, 2017, 284(4): 517-524. |
51 | NOSBAUM A, PREVEL N, TRUONG H A, et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing[J]. J Immunol, 2016, 196(5): 2010-2014. |
52 | ALI N W, ZIRAK B, RODRIGUEZ R S, et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell, 2017, 169(6): 1119-1129.e11. |
53 | LI J T, YANG K Y, TAM R C Y, et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner[J]. Theranostics, 2019, 9(15): 4324-4341. |
54 | YAN D, YU F, CHEN L B, et al. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 22. |
55 | ARPAIA N, GREEN J A, MOLTEDO B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089. |
56 | COCO G, FOULSHAM W, NAKAO T, et al. Regulatory T cells promote corneal endothelial cell survival following transplantation via interleukin-10[J]. Am J Transplant, 2020, 20(2): 389-398. |
57 | ALTSHULER A, AMITAI-LANGE A, TARAZI N, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing[J]. Cell Stem Cell, 2021, 28(7): 1248-1261.e8. |
58 | PILAT N, SPRENT J. Treg therapies revisited: tolerance beyond deletion[J]. Front Immunol, 2021, 11: 622810. |
59 | MACDONALD K N, PIRET J M, LEVINGS M K. Methods to manufacture regulatory T cells for cell therapy[J]. Clin Exp Immunol, 2019, 197(1): 52-63. |
60 | BRUNSTEIN C G, MILLER J S, MCKENNA D H, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051. |
61 | BLUESTONE J A, BUCKNER J H, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med, 2015, 7(315): 315ra189. |
62 | DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.e2. |
63 | SAADOUN D, ROSENZWAJG M, JOLY F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis[J]. N Engl J Med, 2011, 365(22): 2067-2077. |
64 | KORETH J, MATSUOKA K I, KIM H T, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease[J]. N Engl J Med, 2011, 365(22): 2055-2066. |
[1] | HAN Ting, LÜ Chunxin, ZHUO Meng, XIA Qing, LIU Tengfei, WU Xiuqi, LIN Xiaolin, XIAO Xiuying. Related factors and prognostic analysis of adverse events of immunotherapy in advanced gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1053-1061. |
[2] | LI Yuehua, LI Qingfeng, XIE Yun. Advances in application of adipose-derived mesenchymal stem cells in autoimmune diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1131-1138. |
[3] | ZHANG Lincheng, ZHONG Hua. Progress in pathogenesis and clinical treatment of sarcoidosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 931-938. |
[4] | LEI Haitao, TIAN Xuemei, JIN Fangquan. Advances in the correlation between cytokine signal transduction inhibitors and rheumatoid arthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 945-951. |
[5] | ZHANG Huanyu, JIANG Yiting, ZHU Xiaochen, HE Zhiyan, ZHOU Wei, SONG Zhongchen. Effects of gingipain extracts on brain neuroinflammation in mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 570-577. |
[6] | KANG Wenhui, CHEN Yiting, ZHAO Anda, LI Rong, LI Shenghui. Research progress of the mechanism of melatonin in the pathogenesis and course of asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 667-672. |
[7] | Ze-nan WU, Chen ZHANG. Research advances in inflammatory mechanism of anhedonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 241-245. |
[8] | Nan WANG, Ye LU, Feng-jie HAO, Jun-qing WANG. Ameliorative effect of atorvastatin on hepatic fibrosis and its mechanism [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1619-1626. |
[9] | Rui-xue YUAN, Ying-mei FU, Shun-ying YU. Research progress in the mechanism of helper T cell 17 and regulatory T cell in depression [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1384-1388. |
[10] | LI Sen1, JIA Zi-heng1, WEI Xue-rui1, MA Sai1, LU Tian-cheng1, LI Ting-ting2, GU Yan-yun2. Role of bile acid on maintaining metabolic homeostasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1126-1130. |
[11] | HU Yi1, 2, ZHOU Wei2, SONG Zhong-chen1, 2. Peripheral and central inflammatory changes in experimental periodontitis rats [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1579-1584. |
[12] | CAO Li-yuan, MU Wei. Inducers and inhibitors of necroptosis and their research progress in diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1524-1529. |
[13] | DAI Ke-rong. Concept formation of non-expansion technology in stem cell therapy and its application prospect [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1318-1320. |
[14] | YUAN Qing-yue, ZHUANG Ai, SONG Xue-fei, SHI Wo-dong, BI Xiao-ping. Effect of sinus inflammation on the prognosis of blowout orbital fracture [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1398-1401. |
[15] | WANG Qi, ZHU Guan-ya, XIE Ting, GE Kui, NIU Yi-wen. Changes of ATP metabolism and purinergic receptors in inflammatory response stage of diabetic wound healing [J]. , 2020, 40(1): 10-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||