1 |
CHADHA S, KAMENOV K, CIEZA A. The world report on hearing, 2021[J]. Bull World Health Organ, 2021, 99(4): 242-242A.
|
2 |
VASAVDA C, KOTHARI R, MALLA A P, et al. Bilirubin links heme metabolism to neuroprotection by scavenging superoxide[J]. Cell Chem Biol, 2019, 26(10): 1450-1460.e7.
|
3 |
OCHOA E L, WENNBERG R P, AN Y, et al. Interactions of bilirubin with isolated presynaptic nerve terminals: functional effects on the uptake and release of neurotransmitters[J]. Cell Mol Neurobiol, 1993, 13(1): 69-86.
|
4 |
YE H B, SHI H B, WANG J, et al. Bilirubin induces auditory neuropathy in neonatal guinea pigs via auditory nerve fiber damage[J]. J Neurosci Res, 2012, 90(11): 2201-2213.
|
5 |
GLOWATZKI E, GRANT L, FUCHS P. Hair cell afferent synapses[J]. Curr Opin Neurobiol, 2008, 18(4): 389-395.
|
6 |
SHI H B, KAKAZU Y, SHIBATA S, et al. Bilirubin potentiates inhibitory synaptic transmission in lateral superior olive neurons of the rat[J]. Neurosci Res, 2006, 55(2): 161-170.
|
7 |
LI C Y, SHI H B, SONG N Y, et al. Bilirubin enhances neuronal excitability by increasing glutamatergic transmission in the rat lateral superior olive[J]. Toxicology, 2011, 284(1/2/3): 19-25.
|
8 |
YIN X L, LIANG M, SHI H B, et al. The role of γ-aminobutyric acid/glycinergic synaptic transmission in mediating bilirubin-induced hyperexcitation in developing auditory neurons[J]. Toxicol Lett, 2016, 240(1): 1-9.
|
9 |
CHEN X J, ZHOU H Q, YE H B, et al. The effect of bilirubin on the excitability of mitral cells in the olfactory bulb of the rat[J]. Sci Rep, 2016, 6: 32872.
|
10 |
SCHUTTA H S, JOHNSON L, NEVILLE H E. Mitochondrial abnormalities in bilirubin encephalopathy[J]. J Neuropathol Exp Neurol, 1970, 29(2): 296-305.
|
11 |
WENNBERG R P, JOHANSSON B B, FOLBERGROVÁ J, et al. Bilirubin-induced changes in brain energy metabolism after osmotic opening of the blood-brain barrier[J]. Pediatr Res, 1991, 30(5): 473-478.
|
12 |
RODRIGUES C M, SOLÁ S, BRITES D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons[J]. Hepatology, 2002, 35(5): 1186-1195.
|
13 |
RAUTI R, QAISIYA M, TIRIBELLI C, et al. Bilirubin disrupts calcium homeostasis in neonatal hippocampal neurons: a new pathway of neurotoxicity[J]. Arch Toxicol, 2020, 94(3): 845-855.
|
14 |
DANDEKAR A, MENDEZ R, ZHANG K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease[J]. Methods Mol Biol, 2015, 1292: 205-214.
|
15 |
GROJEAN S, KOZIEL V, VERT P, et al. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons[J]. Exp Neurol, 2000, 166(2): 334-341.
|
16 |
SHAPIRO S M, SOMBATI S, GEIGER A, et al. NMDA channel antagonist MK-801 does not protect against bilirubin neurotoxicity[J]. Neonatology, 2007, 92(4): 248-257.
|
17 |
GROJEAN S, VERT P, DAVAL J L. Combined effects of bilirubin and hypoxia on cultured neurons from the developing rat forebrain[J]. Semin Perinatol, 2002, 26(6): 416-424.
|
18 |
LAI K, SONG X L, SHI H S, et al. Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice[J]. Sci Transl Med, 2020, 12(530): eaax1337.
|
19 |
LIANG M, YIN X L, SHI H B, et al. Bilirubin augments Ca2+ load of developing bushy neurons by targeting specific subtype of voltage-gated calcium channels[J]. Sci Rep, 2017, 7(1): 431.
|
20 |
SHI H S, LAI K, YIN X L, et al. Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity[J]. Cell Death Dis, 2019, 10(10): 774.
|
21 |
ZHOU C, SUN R, SUN C, et al. Minocycline protects neurons against glial cells-mediated bilirubin neurotoxicity[J]. Brain Res Bull, 2020, 154: 102-105.
|
22 |
FERNANDES A, SILVA R F, FALCÃO A S, et al. Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS[J]. J Neuroimmunol, 2004, 153(1/2): 64-75.
|
23 |
BARATEIRO A, CHEN S, YUEH M F, et al. Reduced myelination and increased glia reactivity resulting from severe neonatal hyperbilirubinemia[J]. Mol Pharmacol, 2016, 89(1): 84-93.
|
24 |
FOSTER K W, LIU Z, NAIL C D, et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia[J]. Oncogene, 2005, 24(9): 1491-1500.
|
25 |
SILVA S L, VAZ A R, BARATEIRO A, et al. Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation[J]. Neurobiol Dis, 2010, 40(3): 663-675.
|
26 |
LIANG M, YIN X L, WANG L Y, et al. NAD+ attenuates bilirubin-induced hyperexcitation in the ventral cochlear nucleus by inhibiting excitatory neurotransmission and neuronal excitability[J]. Front Cell Neurosci, 2017, 11: 21.
|
27 |
SONG N Y, LI C Y, YIN X L, et al. Taurine protects against bilirubin-induced hyperexcitation in rat anteroventral cochlear nucleus neurons[J]. Exp Neurol, 2014, 254: 216-223.
|
28 |
HAN G Y, LI C Y, SHI H B, et al. Riluzole is a promising pharmacological inhibitor of bilirubin-induced excitotoxicity in the ventral cochlear nucleus[J]. CNS Neurosci Ther, 2015, 21(3): 262-270.
|
29 |
POSS K D, TONEGAWA S. Reduced stress defense in heme oxygenase 1-deficient cells[J]. Proc Natl Acad Sci U S A, 1997, 94(20): 10925-10930.
|
30 |
WANG J, ZHUANG H, DORÉ S. Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage[J]. Neurobiol Dis, 2006, 22(3): 473-476.
|
31 |
DORÉ S, SAMPEI K, GOTO S, et al. Heme oxygenase-2 is neuroprotective in cerebral ischemia[J]. Mol Med Camb Mass, 1999, 5(10): 656-663.
|
32 |
BARANANO D E, RAO M, FERRIS C D, et al. Biliverdin reductase: a major physiologic cytoprotectant[J]. Proc Natl Acad Sci U S A, 2002, 99(25): 16093-16098.
|
33 |
AYCICEK A, EREL O. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy[J]. J Pediatr (Rio J), 2007, 83(4): 319-322.
|
34 |
LIN J P, O'DONNELL C J, SCHWAIGER J P, et al. Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study[J]. Circulation, 2006, 114(14): 1476-1481.
|
35 |
MCDONAGH A F. Controversies in bilirubin biochemistry and their clinical relevance[J]. Semin Fetal Neonatal Med, 2010, 15(3): 141-147.
|