Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (10): 1490-1497.doi: 10.3969/j.issn.1674-8115.2022.10.016
• Review • Previous Articles
JIANG Yi1(), JIANG Ping2, ZHANG Mingming1, FANG Jingyuan1()
Received:
2022-05-07
Accepted:
2022-08-28
Online:
2022-10-17
Published:
2022-10-17
Contact:
FANG Jingyuan
E-mail:jiangyi1501@163.com;jingyuanfang@sjtu.edu.cn
Supported by:
CLC Number:
JIANG Yi, JIANG Ping, ZHANG Mingming, FANG Jingyuan. Research progress in the role of Akkermansia muciniphila in gut-related diseases[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(10): 1490-1497.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.10.016
Disease | Mouse model | Determinant | Effect (+/-) |
---|---|---|---|
Colitis | DSS induced colitis | Bacteria | -/+[ |
AmEV | -[ | ||
Amuc_1100 | -[ | ||
Colitis | Salmonella typhimurium-infected colitis | Bacteria | +[ |
Colitis | Il10-/- mice spontaneous colitis | Bacteria | +[ |
CAC | AOM/DSS induced CAC | Amuc_1100 | -[ |
CRC | ApcMin/+ mice spontaneous CRC | Bacteria | -[ |
CRC | HCT116/CT26 subcutaneously transplantation tumor | Bacteria | -[ |
ALD | Alcohol induced ALD | Bacteria | -[ |
Liver injury | ConA induced liver injury | Bacteria | -[ |
Obesity/T2DM | High-fat diet induced obesity/T2DM | Bacteria | -[ |
Amuc_1100 | -[ |
Tab 1 Effect of A. muciniphila and its components or secretion on different diseases
Disease | Mouse model | Determinant | Effect (+/-) |
---|---|---|---|
Colitis | DSS induced colitis | Bacteria | -/+[ |
AmEV | -[ | ||
Amuc_1100 | -[ | ||
Colitis | Salmonella typhimurium-infected colitis | Bacteria | +[ |
Colitis | Il10-/- mice spontaneous colitis | Bacteria | +[ |
CAC | AOM/DSS induced CAC | Amuc_1100 | -[ |
CRC | ApcMin/+ mice spontaneous CRC | Bacteria | -[ |
CRC | HCT116/CT26 subcutaneously transplantation tumor | Bacteria | -[ |
ALD | Alcohol induced ALD | Bacteria | -[ |
Liver injury | ConA induced liver injury | Bacteria | -[ |
Obesity/T2DM | High-fat diet induced obesity/T2DM | Bacteria | -[ |
Amuc_1100 | -[ |
1 | LYNCH S V, PEDERSEN O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375(24): 2369-2379. |
2 | JAKOBSSON H E, ABRAHAMSSON T R, JENMALM M C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section[J]. Gut, 2014, 63(4): 559-566. |
3 | DERRIEN M, COLLADO M C, BEN-AMOR K, et al. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract[J]. Appl Environ Microbiol, 2008, 74(5): 1646-1648. |
4 | DERRIEN M, VAUGHAN E E, PLUGGE C M, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. Int J Syst Evol Microbiol, 2004, 54(Pt 5): 1469-1476. |
5 | HOLD G L, PRYDE S E, RUSSELL V J, et al. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis[J]. FEMS Microbiol Ecol, 2002, 39(1): 33-39. |
6 | SALZMAN N H, DE JONG H, PATERSON Y, et al. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria[J]. Microbiology (Reading), 2002, 148(Pt 11): 3651-3660. |
7 | DERRIEN M, VAN PASSEL M W, VAN DE BOVENKAMP J H, et al. Mucin-bacterial interactions in the human oral cavity and digestive tract[J]. Gut Microbes, 2010, 1(4): 254-268. |
8 | COLLADO M C, DERRIEN M, ISOLAURI E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly[J]. Appl Environ Microbiol, 2007, 73(23): 7767-7770. |
9 | COLLADO M C, ISOLAURI E, LAITINEN K, et al. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women[J]. Am J Clin Nutr, 2008, 88(4): 894-899. |
10 | SONOYAMA K, FUJIWARA R, TAKEMURA N, et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters[J]. Appl Environ Microbiol, 2009, 75(20): 6451-6456. |
11 | BELZER C, DE VOS W M. Microbes inside: from diversity to function: the case of Akkermansia[J]. ISME J, 2012, 6(8): 1449-1458. |
12 | VAN PASSEL M W J, KANT R, ZOETENDAL E G, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes[J]. PLoS One, 2011, 6(3): e16876. |
13 | BAJER L, KVERKA M, KOSTOVCIK M, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis[J]. World J Gastroenterol, 2017, 23(25): 4548-4558. |
14 | EARLEY H, LENNON G, BALFE Á, et al. The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis[J]. Sci Rep, 2019, 9(1): 15683. |
15 | KUMP P, WURM P, GRÖCHENIG H P, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis[J]. Aliment Pharmacol Ther, 2018, 47(1): 67-77. |
16 | PNG C W, LINDÉN S K, GILSHENAN K S, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria[J]. Am J Gastroenterol, 2010, 105(11): 2420-2428. |
17 | BIAN X Y, WU W R, YANG L Y, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice[J]. Front Microbiol, 2019, 10: 2259. |
18 | KANG C S, BAN M, CHOI E J, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis[J]. PLoS One, 2013, 8(10): e76520. |
19 | WANG L J, TANG L, FENG Y M, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11): 1988-1997. |
20 | HÅKANSSON Å, TORMO-BADIA N, BARIDI A, et al. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice[J]. Clin Exp Med, 2015, 15(1): 107-120. |
21 | CASTRO-MEJÍA J, JAKESEVIC M, KRYCH Ł, et al. Treatment with a monoclonal anti-IL-12p40 antibody induces substantial gut microbiota changes in an experimental colitis model[J]. Gastroenterol Res Pract, 2016, 2016: 4953120. |
22 | GANESH B P, KLOPFLEISCH R, LOH G, et al. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice[J]. PLoS One, 2013, 8(9): e74963. |
23 | SEREGIN S S, GOLOVCHENKO N, SCHAF B, et al. NLRP6 protects Il10 -/- mice from colitis by limiting colonization of Akkermansia muciniphila[J]. Cell Rep, 2017, 19(4): 733-745. |
24 | BAE M, CASSILLY C D, LIU X, et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses[J]. Nature, 2022, 608(7921): 168-173. |
25 | FAN L N, XU C C, GE Q W, et al. A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs[J]. Cancer Immunol Res, 2021, 9(10): 1111-1124. |
26 | COLLINS D, HOGAN A M, WINTER D C. Microbial and viral pathogens in colorectal cancer[J]. Lancet Oncol, 2011, 12(5): 504-512. |
27 | ROUTY B, LE CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. |
28 | HOU X Y, ZHANG P, DU H Z, et al. Akkermansia muciniphila potentiates the antitumor efficacy of FOLFOX in colon cancer[J]. Front Pharmacol, 2021, 12: 725583. |
29 | MILOSEVIC I, VUJOVIC A, BARAC A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci, 2019, 20(2): 395. |
30 | GRANDER C, ADOLPH T E, WIESER V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease[J]. Gut, 2018, 67(5): 891-901. |
31 | WU W R, LV L X, SHI D, et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model[J]. Front Microbiol, 2017, 8: 1804. |
32 | FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. |
33 | EVERARD A, BELZER C, GEURTS L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proc Natl Acad Sci USA, 2013, 110(22): 9066-9071. |
34 | SANTACRUZ A, COLLADO M C, GARCÍA-VALDÉS L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women[J]. Br J Nutr, 2010, 104(1): 83-92. |
35 | KARLSSON C L J, ONNERFÄLT J, XU J, et al. The microbiota of the gut in preschool children with normal and excessive body weight[J]. Obesity (Silver Spring), 2012, 20(11): 2257-2261. |
36 | ZHANG X Y, SHEN D Q, FANG Z W, et al. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One, 2013, 8(8): e71108. |
37 | CHELAKKOT C, CHOI Y, KIM D K, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J]. Exp Mol Med, 2018, 50(2): e450. |
38 | DAO M C, EVERARD A, ARON-WISNEWSKY J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436. |
39 | PLOVIER H, EVERARD A, DRUART C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nat Med, 2017, 23(1): 107-113. |
40 | LEE H, KO G. Effect of metformin on metabolic improvement and gut microbiota[J]. Appl Environ Microbiol, 2014, 80(19): 5935-5943. |
41 | SHIN N R, LEE J C, LEE H Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63(5): 727-735. |
42 | LI J, LIN S Q, VANHOUTTE P M, et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe -/- mice[J]. Circulation, 2016, 133(24): 2434-2446. |
43 | ZHU L D, LU X X, LIU L, et al. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium[J]. Vet Res, 2020, 51(1): 34. |
44 | REUNANEN J, KAINULAINEN V, HUUSKONEN L, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Appl Environ Microbiol, 2015, 81(11): 3655-3662. |
45 | ALAM A, LEONI G, QUIROS M, et al. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota[J]. Nat Microbiol, 2016, 1: 15021. |
46 | GREGORIEFF A, PINTO D, BEGTHEL H, et al. Expression pattern of Wnt signaling components in the adult intestine[J]. Gastroenterology, 2005, 129(2): 626-638. |
47 | DERRIEN M, VAN BAARLEN P, HOOIVELD G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila[J]. Front Microbiol, 2011, 2: 166. |
48 | ANSALDO E, SLAYDEN L C, CHING K L, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis[J]. Science, 2019, 364(6446): 1179-1184. |
49 | MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286. |
50 | KIM M, FRIESEN L, PARK J, et al. Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice[J]. Eur J Immunol, 2018, 48(7): 1235-1247. |
51 | MENG X, ZHANG J R, WU H, et al. Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway[J]. Int J Mol Sci, 2020, 21(9): 3385. |
52 | CARIO E, GERKEN G, PODOLSKY D K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function[J]. Gastroenterology, 2007, 132(4): 1359-1374. |
[1] | CUI Xiwei, CHUNG Manhon, AIMAIER Rehanguli, WANG Zhichao, LI Qingfeng. Role of human pleiotrophin in the metastasis of malignant peripheral nerve sheath tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1225-1238. |
[2] | WANG Jie, WU Hui, LU Lingpeng, YANG Kefeng, ZHU Jie, ZHOU Hengyi, YAO Die, GAO Ya, FENG Yuting, LIU Yuhong, JIA Jie. Dynamic changes in gut microbiota of women with gestational diabetes mellitus and the correlation with blood glucose, blood lipid and diet [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1336-1346. |
[3] | CHU Yunkai, LIAO Chunhua, DENG Huayun, HUANG Lei. Study of the regulatory network of MUC1 and tumor-associated proteins [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1024-1033. |
[4] | QIU Jiahui, CAI Qianqian, YANG Yan, CHENG Feichi, QIU Zhengjun, HUANG Chen. Value of combined perineural lymphovascular invasion and tumor-stroma ratio in guiding the prognosis of colorecatal cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1070-1080. |
[5] | LIN Jiayu, QIN Jiejie, JIANG Lingxi. Progress in metabolism of the immune cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1122-1130. |
[6] | A Tingxi, SHAO Chunyi, FU Yao. Research progress on the role of regulatory T cells in ocular surface diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1145-1150. |
[7] | LIU Hongqiang, LU Yanqing, GAO Yuxuan, WANG Yiyun, WANG Chuandong, ZHANG Xiaoling. Construction of OPEI vector for silencing TRAF6 to promote cartilage regeneration in inflammatory environment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 846-857. |
[8] | WANG Yuxin, SUN Ruiqi, LIU Jianhua, HE Weina. Development of pH-responsive fluorescent probe for tumor microenvironment imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 875-884. |
[9] | ZHANG Lincheng, ZHONG Hua. Progress in pathogenesis and clinical treatment of sarcoidosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 931-938. |
[10] | LU Yu, WANG Hao, BA Qian. Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 939-944. |
[11] | LEI Haitao, TIAN Xuemei, JIN Fangquan. Advances in the correlation between cytokine signal transduction inhibitors and rheumatoid arthritis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 945-951. |
[12] | HU Xiao, ZHANG Xin, GU Yang. Study on the interaction between body weight and C1q tumour necrosis factor-related protein 1 in patients with myocardial infarction [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 786-791. |
[13] | ZHENG Shifan, MA Jiao. Research progress in the role of cancer stem cell metabolism in tumor development [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 825-832. |
[14] | ZHANG Xiuqi, SHEN Baiyong. Advances in cytological mechanism of neural invasion in pancreatic ductal adenocarcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 833-838. |
[15] | ZHANG Huanyu, JIANG Yiting, ZHU Xiaochen, HE Zhiyan, ZHOU Wei, SONG Zhongchen. Effects of gingipain extracts on brain neuroinflammation in mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 570-577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||