Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (7): 814-821.doi: 10.3969/j.issn.1674-8115.2024.07.002
• Topics on advances in translational medicine frontiers • Previous Articles Next Articles
HU Fei1(), CAI Xiaohan2, CHENG Rui3, JI Shiyu4, MIAO Jiaxin5, ZHU Yan6, FAN Guangjian7()
Received:
2023-12-28
Accepted:
2024-05-22
Online:
2024-07-28
Published:
2024-07-28
Contact:
FAN Guangjian
E-mail:hufei200009@163.com;gjfan@shsmu.edu.cn
Supported by:
CLC Number:
HU Fei, CAI Xiaohan, CHENG Rui, JI Shiyu, MIAO Jiaxin, ZHU Yan, FAN Guangjian. Progress in translational research on immunotherapy for osteosarcoma[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 814-821.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.07.002
1 | ZHAO X, WU Q R, GONG X Q, et al. Osteosarcoma: a review of current and future therapeutic approaches[J]. Biomed Eng Online, 2021, 20(1): 24. |
2 | BERNTHAL N M, FEDERMAN N, EILBER F R, et al. Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma[J]. Cancer, 2012, 118(23): 5888-5893. |
3 | XU Y, SHI F Q, ZHANG Y T, et al. Twenty-year outcome of prevalence, incidence, mortality and survival rate in patients with malignant bone tumors[J]. Int J Cancer, 2024, 154(2): 226-240. |
4 | MOUKENGUE B, LALLIER M, MARCHANDET L, et al. Origin and therapies of osteosarcoma[J]. Cancers, 2022, 14(14): 3503. |
5 | ZHU T Y, HAN J, YANG L, et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications[J]. Front Immunol, 2022, 13: 907550. |
6 | ZHOU Y, YANG D, YANG Q C, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J]. Nat Commun, 2020, 11(1): 6322. |
7 | CERSOSIMO F, LONARDI S, BERNARDINI G, et al. Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy[J]. Int J Mol Sci, 2020, 21(15): 5207. |
8 | 刘净峰, 徐鸿锋, 刘巍峰. 骨肉瘤驱动基因与免疫微环境及靶向治疗的研究进展[J]. 中国骨与关节杂志, 2024, 13(5): 390-395. |
LIU J F, XU H F, LIU W F. Research advances on osteosarcoma driver genes, immune microenvironment, and targeted therapy[J]. Chinese Journal of Bone and Joint, 2024, 13(5): 390-395. | |
9 | HUANG Q S, LIANG X, REN T T, et al. The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications[J]. Cell Oncol, 2021, 44(3): 525-539. |
10 | TIAN H L, CAO J J, LI B W, et al. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment[J]. Bone Res, 2023, 11(1): 11. |
11 | HOU C H, LU M, LEI Z X, et al. HMGB1 positive feedback loop between cancer cells and tumor-associated macrophages promotes osteosarcoma migration and invasion[J]. Lab Invest, 2023, 103(5): 100054. |
12 | WOLF-DENNEN K, GORDON N, KLEINERMAN E S. Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions[J]. Oncoimmunology, 2020, 9(1): 1747677. |
13 | CHENG Z H, WANG L Q, WU C H, et al. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through Tim-3[J]. Arch Med Res, 2021, 52(2): 200-210. |
14 | ANAND N, PEH K H, KOLESAR J M. Macrophage repolarization as a therapeutic strategy for osteosarcoma[J]. Int J Mol Sci, 2023, 24(3): 2858. |
15 | RAGGI C, MOUSA H S, CORRENTI M, et al. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies[J]. Oncogene, 2016, 35(6): 671-682. |
16 | LIN J T, XU A K, JIN J K, et al. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression[J]. Oncoimmunology, 2022, 11(1): 2024941. |
17 | KALLURI R, LEBLEU V S. The biology,function,and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. |
18 | ZHANG L, YU D H. Exosomes in cancer development, metastasis, and immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 455-468. |
19 | WANG J, ZHANG H L, SUN X, et al. Exosomal PD-L1 and N-cadherin predict pulmonary metastasis progression for osteosarcoma patients[J]. J Nanobiotechnology, 2020, 18(1): 151. |
20 | PU F F, CHEN F X, ZHANG Z C, et al. Information transfer and biological significance of neoplastic exosomes in the tumor microenvironment of osteosarcoma[J]. Onco Targets Ther, 2020, 13: 8931-8940. |
21 | TANG J X, HE J Y, FENG C Y, et al. Exosomal miRNAs in osteosarcoma: biogenesis and biological functions[J]. Front Pharmacol, 2022, 13: 902049. |
22 | DYSON K A, STOVER B D, GRIPPIN A, et al. Emerging trends in immunotherapy for pediatric sarcomas[J]. J Hematol Oncol, 2019, 12(1): 78. |
23 | ZHONG R, LING X, CAO S, et al. Safety and efficacy of dendritic cell-based immunotherapy (DCVAC/LuCa) combined with carboplatin/pemetrexed for patients with advanced non-squamous non-small-cell lung cancer without oncogenic drivers[J]. ESMO Open, 2022, 7(1): 100334. |
24 | YU J F, SUN H, CAO W J, et al. Research progress on dendritic cell vaccines in cancer immunotherapy[J]. Exp Hematol Oncol, 2022, 11(1): 3. |
25 | ASSI T, WATSON S, SAMRA B, et al. Targeting the VEGF pathway in osteosarcoma[J]. Cells, 2021, 10(5): 1240. |
26 | DUFFAUD F, MIR O, BOUDOU-ROUQUETTE P, et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study[J]. Lancet Oncol, 2019, 20(1): 120-133. |
27 | DAVIS L E, BOLEJACK V, RYAN C W, et al. Randomized double-blind phase Ⅱ study of regorafenib in patients with metastatic osteosarcoma[J]. J Clin Oncol, 2019, 37(16): 1424-1431. |
28 | DUFFAUD F, BLAY J Y, LE CESNE A, et al. Regorafenib in patients with advanced Ewing sarcoma: results of a non-comparative, randomised, double-blind, placebo-controlled, multicentre Phase Ⅱ study[J]. Br J Cancer, 2023, 129(12): 1940-1948. |
29 | TIAN Z C, WANG J Q, GE H. Apatinib ameliorates doxorubicin-induced migration and cancer stemness of osteosarcoma cells by inhibiting Sox2 via STAT3 signalling[J]. J Orthop Translat, 2020, 22: 132-141. |
30 | LIU K S, REN T T, HUANG Y, et al. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma[J]. Cell Death Dis, 2017, 8(8): e3015. |
31 | XIE L, XU J, SUN X, et al. Apatinib for advanced osteosarcoma after failure of standard multimodal therapy: an open label phase Ⅱ clinical trial[J]. Oncologist, 2019, 24(7): e542-e550. |
32 | ZHANG X, PAN Q Z, PENG R Q, et al. A phase Ⅱ study of surufatinib in patients with osteosarcoma and soft tissue sarcoma who have experienced treatment failure with standard chemotherapy[J]. J Clin Oncol, 2023, 41(16_suppl): e23540. |
33 | YU L F, FAN G T, WANG Q Y, et al. In vivo self-assembly and delivery of VEGFR2 siRNA-encapsulated small extracellular vesicles for lung metastatic osteosarcoma therapy[J]. Cell Death Dis, 2023, 14(9): 626. |
34 | HAVEL J J, CHOWELL D, CHAN T A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019, 19(3): 133-150. |
35 | YI M, NIU M K, XU L P, et al. Regulation of PD-L1 expression in the tumor microenvironment[J]. J Hematol Oncol, 2021, 14(1): 10. |
36 | HASHIMOTO K, NISHIMURA S, AKAGI M. Characterization of PD-1/PD-L1 immune checkpoint expression in osteosarcoma[J]. Diagnostics, 2020, 10(8): 528. |
37 | TODA Y, KOHASHI K, YAMADA Y, et al. PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: comparative study of primary and metastatic lesions[J]. J Cancer Res Clin Oncol, 2020, 146(10): 2607-2620. |
38 | DHUPKAR P, GORDON N, STEWART J, et al. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases[J]. Cancer Med, 2018, 7(6): 2654-2664. |
39 | ZHANG M, CHEN L, LI Y, et al. PD‑L1/PD‑1 axis serves an important role in natural killer cell‑induced cytotoxicity in osteosarcoma[J]. Oncol Rep, 2019, 42(5): 2049-2056. |
40 | BOYE K, LONGHI A, GUREN T, et al. Pembrolizumab in advanced osteosarcoma: results of a single-arm, open-label, phase 2 trial[J]. Cancer Immunol Immunother, 2021, 70(9): 2617-2624. |
41 | WEN Y, TANG F, TU C Q, et al. Immune checkpoints in osteosarcoma: recent advances and therapeutic potential[J]. Cancer Lett, 2022, 547: 215887. |
42 | XIE L, XU J, SUN X, et al. Apatinib plus camrelizumab (anti-PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO) progressing after chemotherapy: a single-arm, open-label, phase 2 trial[J]. J Immunother Cancer, 2020, 8(1): e000798. |
43 | SZNOL M, MELERO I. Revisiting anti-CTLA-4 antibodies in combination with PD-1 blockade for cancer immunotherapy[J]. Ann Oncol, 2021, 32(3): 295-297. |
44 | ROY D, GILMOUR C, PATNAIK S, et al. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors[J]. Front Immunol, 2023, 14: 1264327. |
45 | BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. |
46 | YUAN J H, JIA J Y, WU T L, et al. Long intergenic non-coding RNA DIO3OS promotes osteosarcoma metastasis via activation of the TGF-β signaling pathway: a potential diagnostic and immunotherapeutic target for osteosarcoma[J]. Cancer Cell Int, 2023, 23(1): 215. |
47 | XIE L, CHEN C L, LIANG X, et al. Expression and clinical significance of various checkpoint molecules in advanced osteosarcoma: possibilities for novel immunotherapy[J]. Orthop Surg, 2023, 15(3): 829-838. |
48 | ZHANG Y M, GAN W Y, RU N, et al. Comprehensive multi-omics analysis reveals m7G-related signature for evaluating prognosis and immunotherapy efficacy in osteosarcoma[J]. J Bone Oncol, 2023, 40: 100481. |
49 | SCHULTZ L. Chimeric antigen receptor T cell therapy for pediatric B-ALL: narrowing the gap between early and long-term outcomes[J]. Front Immunol, 2020, 11: 1985. |
50 | LI S Z, ZHANG H, SHANG G N. Current status and future challenges of CAR-T cell therapy for osteosarcoma[J]. Front Immunol, 2023, 14: 1290762. |
51 | CORTI C, VENETIS K, SAJJADI E, et al. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress[J]. Expert Opin Investig Drugs, 2022, 31(6): 593-605. |
52 | KACZANOWSKA S, MURTY T, ALIMADADI A, et al. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy[J]. Cancer Cell, 2024, 42(1): 35-51.e8. |
53 | ZHU J W, SIMAYI N, WAN R X, et al. CAR T targets and microenvironmental barriers of osteosarcoma[J]. Cytotherapy, 2022, 24(6): 567-576. |
54 | MENSALI N, KÖKSAL H, JOAQUINA S, et al. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma[J]. Nat Commun, 2023, 14(1): 3375. |
55 | MOONAT H, HUANG G X, DHUPKAR P, et al. Combination of interleukin-11Rα chimeric antigen receptor T-cells and programmed death-1 blockade as an approach to targeting osteosarcoma cells in vitro[J]. Cancer Transl Med, 2017, 3(4): 139. |
56 | LUSSIER D M, JOHNSON J L, HINGORANI P, et al. Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma[J]. J Immunother Cancer, 2015, 3: 21. |
57 | D'ANGELO S P, MAHONEY M R, VAN TINE B A, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials[J]. Lancet Oncol, 2018, 19(3): 416-426. |
58 | KAWANO M, ITONAGA I, IWASAKI T, et al. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma[J]. Oncol Rep, 2013, 29(3): 1001-1006. |
59 | KRUPKA C, KUFER P, KISCHEL R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism[J]. Leukemia, 2016, 30(2): 484-491. |
60 | SUN C, DOTTI G, SAVOLDO B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies[J]. Blood, 2016, 127(26): 3350-3359. |
61 | WANG Z, LI B H, REN Y Q, et al. T-cell-based immunotherapy for osteosarcoma: challenges and opportunities[J]. Front Immunol, 2016, 7: 353. |
62 | CHAPUIS A G, ROBERTS I M, THOMPSON J A, et al. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression[J]. J Clin Oncol, 2016, 34(31): 3787-3795. |
63 | CURRAN M A, MONTALVO W, YAGITA H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4275-4280. |
64 | YU A L, GILMAN A L, OZKAYNAK M F, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma[J]. N Engl J Med, 2010, 363(14): 1324-1334. |
65 | ZHU W H, MAO X Z, WANG W C, et al. Anti-ganglioside GD2 monoclonal antibody synergizes with cisplatin to induce endoplasmic reticulum-associated apoptosis in osteosarcoma cells[J]. Pharmazie, 2018, 73(2): 80-86. |
66 | THANINDRATARN P, DEAN D C, NELSON S D, et al. Advances in immune checkpoint inhibitors for bone sarcoma therapy[J]. J Bone Oncol, 2019, 15: 100221. |
67 | YAMADA N, HATA M, OHYAMA H, et al. Immunotherapy with interleukin-18 in combination with preoperative chemotherapy with ifosfamide effectively inhibits postoperative progression of pulmonary metastases in a mouse osteosarcoma model[J]. Tumour Biol, 2009, 30(4): 176-184. |
68 | HE X J, LIN H Q, YUAN L, et al. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice[J]. Cancer Biol Ther, 2017, 18(2): 94-100. |
69 | KAWANO M, TANAKA K, ITONAGA I, et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma[J]. Oncol Lett, 2016, 11(3): 2169-2175. |
[1] | ZHOU Haixia, ZHANG Jing. Research progress of m6A methylation modification in regulating tumor immunity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 137-144. |
[2] | WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 624-630. |
[3] | LU Yu, WANG Hao, BA Qian. Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 939-944. |
[4] | Jing-wei LI, Li-wen WANG, Ling-xi JIANG, Qian ZHAN, Hao CHEN, Bai-yong SHEN. Review of immunosuppressive tumor microenvironment of pancreatic cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1103-1108. |
[5] | Xu-xin-yi LING, Yao ZHANG, Hua ZHONG. Research progress in screening non-small cell lung cancer patients who will benefit from immunotherapy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1114-1119. |
[6] | Paerhati NADINA, Yan YAN, Qian-ji CHE, Jing LUO, Xin-nan LIU, Bin LI. Application and prospect of chimeric antigen receptor-modified T cell therapy for glioblastoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 982-986. |
[7] | Yun-fang MA, Li-na PAN, Zhen LI, Bei-li GAO, Jia-an HU, Zhi-hong XU. Exploratory study on downregulation of PD-L1 in KRAS G12V-mutant non-small cell lung cancer cells by selumetinib [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 741-748. |
[8] | HE Chun-ming, YIN Hang, ZHENG Jia-jie, TANG Jian, FU Yu-jie, ZHAO Xiao-jing. Immunotherapy for lung cancer: immunosuppressive cells and intrapulmonary immunity [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1137-1142. |
[9] | LIU Jie, QIU Xiao-chun. Research hotspots and trends of breast cancer stem cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(7): 881-888. |
[10] | DAI Fei, WEI Jin-jin, TANG Xin-yue, CHEN Zheng, LIN Lin. Effect of sublingual immunotherapy on functions of effector T cells and regulatory T cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 626-632. |
[11] | ZHAO Yi-si1, YU Ying-xi1, LIN Shi-hui2, XU Fang1, 2. Advances in the study of T cell immunity in invasive fungal infections secondary to sepsis [J]. , 2019, 39(11): 1325-. |
[12] | LI Xia-yi, ZHENG Lei-zhen. Application of programmed cell death protein 1/programmed death-ligand 1 blockade in advanced gastric cancer treatment [J]. , 2018, 38(10): 1259-. |
[13] | XIA Li, WANG Yue-ying . Chimeric antigen receptor T-cell immunotherapy and its applications in hematological malignancies immunotherapy [J]. , 2017, 37(6): 822-. |
[14] | MA Cai-xia, LU Mei-fang, GE Li-ping, et al. Clinical evaluation of sublingual allergen specific immunotherapy in treatment to children with bronchial asthma and allergic rhinitis [J]. , 2014, 34(6): 873-. |
[15] | LU Jiang-wen, LI Jia-rui. Research status and prospect in dendritic cell vaccine for ovarian cancer [J]. , 2014, 34(1): 113-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||