
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (12): 1514-1525.doi: 10.3969/j.issn.1674-8115.2024.12.004
• Basic research • Previous Articles Next Articles
LIU Chenxi1,2(
), HAN Lin3(
), YANG Yi1,2, ZHOU Han1,2, LIU Yayun1,2(
), SHENG Deqiao1,2(
)
Received:2024-02-26
Accepted:2024-08-05
Online:2024-12-28
Published:2024-12-28
Contact:
LIU Yayun,SHENG Deqiao
E-mail:381212026@qq.com;527982635@qq.com;liuyyctgu@ctgu.edu.cn;834309103@qq.com
Supported by:CLC Number:
LIU Chenxi, HAN Lin, YANG Yi, ZHOU Han, LIU Yayun, SHENG Deqiao. GPR87 promotes invasion and migration through the RHO/ROCK pathway in non-small cell lung cancer[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1514-1525.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.12.004
| Name | Forward (5'→3') | Reverse (5'→3') |
|---|---|---|
| siRNA-GPR87-1 | GACCUUAGUUUCAAAGCUUdTdT | AAGCUUUGAAACUAAGGUCdTdT |
| siRNA-GPR87-2 | GCAUCUUGCUGAAUGGUUUdTdT | AAACCAUUCAGCAAGAUGCdTdT |
| NC-siRNA | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
Tab 1 Sequences of siRNA
| Name | Forward (5'→3') | Reverse (5'→3') |
|---|---|---|
| siRNA-GPR87-1 | GACCUUAGUUUCAAAGCUUdTdT | AAGCUUUGAAACUAAGGUCdTdT |
| siRNA-GPR87-2 | GCAUCUUGCUGAAUGGUUUdTdT | AAACCAUUCAGCAAGAUGCdTdT |
| NC-siRNA | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
| Gene | Forward (5'→3') | Reverse (5'→3') |
|---|---|---|
| GPR87 | GGAGGCGACATCAATGCAG | AAATGAAAGTAAAGAACGATTTTGTGT |
| MMP2 | GCTGGAGACAAATTCTGGAGATACA | GTATCGAAGGCAGTGGAGAGGA |
| MMP7 | GAGTGAGCTACAGTGGGAACA | CTATGACGCGGGAGTTTAACAT |
| MMP9 | GCCACTACTGTGCCTTTGAGTC | CCCTCAGAGAATCGCCAGTACT |
| E-cadherin | GCCTCCTGAAAAGAGAGTGGAAG | TGGCAGTGTCTCTCCAAATCCG |
| N-cadherin | CCTCCAGAGTTTACTGCCATGAC | GTAGGATCTCCGCCACTGATTC |
| vimentin | AGGCAAAGCAGGAGTCCACTGA | ATCTGGCGTTCCAGGGACTCAT |
| snail | TGCCCTCAAGATGCACATCCGA | GGGACAGGAGAAGGGCTTCTC |
| twist | GCCAGGTACATCGACTTCCTCT | TCCATCCTCCAGACCGAGAAGG |
| RHOA | GCAGGTAGAGTTGGCTTTATGG | CTTGTGTGCTCATCATTCCGA |
| RHOC | AAGACGAGCACACCAGGAGAGA | TTGGCTGAGCACTCAAGGTAGC |
| ROCK1 | GAAACAGTGTTCCATGCTAGACG | GCCGCTTATTTGATTCCTGCTCC |
| β-actin | CTGGAACGGTGAAGGTGACA | AAGGGACTTCCTGTAACAACGCA |
Tab 2 Sequences of primers for RT-qPCR
| Gene | Forward (5'→3') | Reverse (5'→3') |
|---|---|---|
| GPR87 | GGAGGCGACATCAATGCAG | AAATGAAAGTAAAGAACGATTTTGTGT |
| MMP2 | GCTGGAGACAAATTCTGGAGATACA | GTATCGAAGGCAGTGGAGAGGA |
| MMP7 | GAGTGAGCTACAGTGGGAACA | CTATGACGCGGGAGTTTAACAT |
| MMP9 | GCCACTACTGTGCCTTTGAGTC | CCCTCAGAGAATCGCCAGTACT |
| E-cadherin | GCCTCCTGAAAAGAGAGTGGAAG | TGGCAGTGTCTCTCCAAATCCG |
| N-cadherin | CCTCCAGAGTTTACTGCCATGAC | GTAGGATCTCCGCCACTGATTC |
| vimentin | AGGCAAAGCAGGAGTCCACTGA | ATCTGGCGTTCCAGGGACTCAT |
| snail | TGCCCTCAAGATGCACATCCGA | GGGACAGGAGAAGGGCTTCTC |
| twist | GCCAGGTACATCGACTTCCTCT | TCCATCCTCCAGACCGAGAAGG |
| RHOA | GCAGGTAGAGTTGGCTTTATGG | CTTGTGTGCTCATCATTCCGA |
| RHOC | AAGACGAGCACACCAGGAGAGA | TTGGCTGAGCACTCAAGGTAGC |
| ROCK1 | GAAACAGTGTTCCATGCTAGACG | GCCGCTTATTTGATTCCTGCTCC |
| β-actin | CTGGAACGGTGAAGGTGACA | AAGGGACTTCCTGTAACAACGCA |
| ID | Padj | P value | logFC | Gene symbol |
|---|---|---|---|---|
| 219936_s_at | 3.47×10-5 | 2.32×10-7 | 2.43 | GPR87 |
| 212094_at | 1.24×10-5 | 4.70×10-8 | 2.36 | PEG10 |
| 209278_s_at | 1.63×10-2 | 1.53×10-3 | 2.22 | TFPI2 |
| 227506_at | 1.25×10-5 | 5.17×10-8 | 2.14 | SLC16A9 |
| 206023_at | 3.69×10-4 | 6.62×10-6 | 2.12 | NMU |
| 205048_s_at | 3.22×10-3 | 1.44×10-4 | 2.02 | PSPH |
| 220393_at | 7.91×10-3 | 5.37×10-4 | -2.05 | LGSN |
| 213432_at | 1.33×10-3 | 3.96×10-5 | -2.17 | MUC5B |
| 225728_at | 2.93×10-4 | 4.65×10-6 | -2.23 | SORBS2 |
| 203824_at | 1.38×10-3 | 4.19×10-5 | -2.25 | TSPAN8 |
Tab 3 DEGs associated with metastasis and prognosis in NSCLC
| ID | Padj | P value | logFC | Gene symbol |
|---|---|---|---|---|
| 219936_s_at | 3.47×10-5 | 2.32×10-7 | 2.43 | GPR87 |
| 212094_at | 1.24×10-5 | 4.70×10-8 | 2.36 | PEG10 |
| 209278_s_at | 1.63×10-2 | 1.53×10-3 | 2.22 | TFPI2 |
| 227506_at | 1.25×10-5 | 5.17×10-8 | 2.14 | SLC16A9 |
| 206023_at | 3.69×10-4 | 6.62×10-6 | 2.12 | NMU |
| 205048_s_at | 3.22×10-3 | 1.44×10-4 | 2.02 | PSPH |
| 220393_at | 7.91×10-3 | 5.37×10-4 | -2.05 | LGSN |
| 213432_at | 1.33×10-3 | 3.96×10-5 | -2.17 | MUC5B |
| 225728_at | 2.93×10-4 | 4.65×10-6 | -2.23 | SORBS2 |
| 203824_at | 1.38×10-3 | 4.19×10-5 | -2.25 | TSPAN8 |
| Group | Case/n | Expression of GPR87/n | χ2 | P value | |
|---|---|---|---|---|---|
| High | Low | ||||
| Tissue of NSCLC | 80 | 51 | 29 | 74.862 | <0.001 |
| Adjacent non-tumor tissues | 80 | 0 | 80 | ||
Tab 4 Protein expression levels of GPR87 in NSCLC tumors and adjacent non-tumor tissues
| Group | Case/n | Expression of GPR87/n | χ2 | P value | |
|---|---|---|---|---|---|
| High | Low | ||||
| Tissue of NSCLC | 80 | 51 | 29 | 74.862 | <0.001 |
| Adjacent non-tumor tissues | 80 | 0 | 80 | ||
| Factor | Case/n | Expression of GPR87/n | χ2 | P value | |
|---|---|---|---|---|---|
| High | Low | ||||
| Subgroup | 1.524 | 0.217 | |||
| LUAD | 48 | 28 | 20 | ||
| LUSC | 32 | 23 | 9 | ||
| Age/year | 0.197 | 0.657 | |||
| ≥65 | 36 | 22 | 14 | ||
| <65 | 44 | 29 | 15 | ||
| Gender | 0.442 | 0.506 | |||
| Male | 48 | 32 | 16 | ||
| Female | 32 | 19 | 13 | ||
| Smoking | 0.548 | 0.459 | |||
| Yes/ever | 43 | 29 | 14 | ||
| No | 37 | 22 | 15 | ||
| Differentiation | 1.847 | 0.174 | |||
| Good | 11 | 5 | 6 | ||
| Middle/poor | 69 | 46 | 23 | ||
| Stage | 10.498 | 0.001 | |||
| Ⅰ/Ⅱ | 65 | 36 | 29 | ||
| Ⅲ/Ⅳ | 15 | 15 | 0 | ||
| Lymphatic metastasis | 5.485 | 0.019 | |||
| No | 50 | 27 | 23 | ||
| Yes | 30 | 24 | 6 | ||
Tab 5 The relevance of GPR87 expression to clinicopathological characteristics in NSCLC patients
| Factor | Case/n | Expression of GPR87/n | χ2 | P value | |
|---|---|---|---|---|---|
| High | Low | ||||
| Subgroup | 1.524 | 0.217 | |||
| LUAD | 48 | 28 | 20 | ||
| LUSC | 32 | 23 | 9 | ||
| Age/year | 0.197 | 0.657 | |||
| ≥65 | 36 | 22 | 14 | ||
| <65 | 44 | 29 | 15 | ||
| Gender | 0.442 | 0.506 | |||
| Male | 48 | 32 | 16 | ||
| Female | 32 | 19 | 13 | ||
| Smoking | 0.548 | 0.459 | |||
| Yes/ever | 43 | 29 | 14 | ||
| No | 37 | 22 | 15 | ||
| Differentiation | 1.847 | 0.174 | |||
| Good | 11 | 5 | 6 | ||
| Middle/poor | 69 | 46 | 23 | ||
| Stage | 10.498 | 0.001 | |||
| Ⅰ/Ⅱ | 65 | 36 | 29 | ||
| Ⅲ/Ⅳ | 15 | 15 | 0 | ||
| Lymphatic metastasis | 5.485 | 0.019 | |||
| No | 50 | 27 | 23 | ||
| Yes | 30 | 24 | 6 | ||
| 1 | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022,72(1):7-33. |
| 2 | CAI Z J, ZHAN P, SONG Y, et al. Safety and efficacy of retreatment with immune checkpoint inhibitors in non-small cell lung cancer: a systematic review and meta-analysis[J]. Transl Lung Cancer Res, 2022, 11(8): 1555-1566. |
| 3 | YE Z C, HUANG Y M, KE J H, et al. Breakthrough in targeted therapy for non-small cell lung cancer[J]. Biomed Pharmacother, 2021, 133: 111079. |
| 4 | PRIESTLEY P, BABER J, LOLKEMA M P, et al. Pan-cancer whole-genome analyses of metastatic solid tumours[J]. Nature, 2019, 575(7781): 210-216. |
| 5 | BAI R, ZHANG J G, HE F J, et al. GPR87 promotes tumor cell invasion and mediates the immunogenomic landscape of lung adenocarcinoma[J]. Commun Biol, 2022, 5(1): 663. |
| 6 | KITA Y, GO T, NAKASHIMA N, et al. Inhibition of cell-surface molecular GPR87 with GPR87-suppressing adenoviral vector disturb tumor proliferation in lung cancer cells[J]. Anticancer Res, 2020, 40(2): 733-741. |
| 7 | PARK S M, CHOI E Y, BAE, et al. Histone variant H3F3A promotes lung cancer cell migration through intronic regulation[J]. Nat Commun, 2016, 7: 12914. |
| 8 | LEE S, CHO M, PARK B, et al. Finding miRNA-RNA network biomarkers for predicting metastasis and prognosis in cancer[J]. Int J Mol Sci, 2023, 24(5): 5052. |
| 9 | GUTKIND J S, KOSTENIS E. Arrestins as rheostats of GPCR signalling[J]. Nat Rev Mol Cell Biol, 2018, 19(10): 615-616. |
| 10 | CHAUDHARY P K, KIM S. An insight into GPCR and G-proteins as cancer drivers[J]. Cells, 2021, 10(12): 3288. |
| 11 | SIDDHARTHA R, GARG M. Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions[J]. Toxicol Appl Pharmacol, 2021, 426: 115593. |
| 12 | MERCHANT N, NAGARAJU G P, RAJITHA B, et al. Matrix metalloproteinases: their functional role in lung cancer[J]. Carcinogenesis, 2017, 38(8): 766-780. |
| 13 | ALQURASHI Y E, AL-HETTY H R A K, RAMAIAH P, et al. Harnessing function of EMT in hepatocellular carcinoma: from biological view to nanotechnological standpoint[J]. Environ Res, 2023, 227: 115683. |
| 14 | MANSHOURI R, COYAUD E, KUNDU S T, et al. ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer[J]. Nat Commun, 2019, 10(1): 5125. |
| 15 | PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. |
| 16 | TULCHINSKY E, DEMIDOV O, KRIAJEVSKA M, et al. EMT: a mechanism for escape from EGFR-targeted therapy in lung cancer[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(1): 29-39. |
| 17 | GUAN G Z, CANNON R D, COATES D E, et al. Effect of the rho-kinase/ROCK signaling pathway on cytoskeleton components[J]. Genes, 2023, 14(2): 272. |
| 18 | ZAKARIA M A, RAJAB N F, CHUA E W, et al. Roles of Rho-associated kinase in lung cancer (Review)[J]. Int J Oncol, 2021, 58(2): 185-198. |
| 19 | NISS ARFELT K, FARES S, SPARRE-ULRICH A H, et al. Signaling via G proteins mediates tumorigenic effects of GPR87[J]. Cell Signal, 2017, 30: 9-18. |
| 20 | JEONG K J, PARK S Y, CHO K H, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion[J]. Oncogene, 2012, 31(39): 4279-4289. |
| 21 | GONG H, ZHOU L, KHELFAT L, et al. Rho-associated protein kinase (ROCK) promotes proliferation and migration of PC-3 and DU145 prostate cancer cells by targeting LIM kinase 1 (LIMK1) and matrix metalloproteinase-2 (MMP2)[J]. Med Sci Monit, 2019, 25: 3090-3099. |
| [1] | YANG Na, LIU Junli, BAI Jing, YANG Siyi, HAN Jiming, ZHANG Huahua. HENMT1 promotes the proliferation and migration of gastric cancer by activating the PI3K-AKT-mTOR signaling pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 717-726. |
| [2] | ZHANG Xianzhou, DU Fenglin, WU Lei, REN Yizhe, ZHAO Mingna, LOU Jiatao. Mechanistic study of OGT-promoted non-small cell lung cancer proliferation via the ERK signaling pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1288-1297. |
| [3] | LI Xiang, WEI Ming, WU Wenxi, LUO Xiaoqin, YAO Biao, WU Siyu. Inhibitory effect of rutin on the growth and metastasis of osteosarcoma in vitro and in vivo [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 20-28. |
| [4] | YANG Han, LEI Hao, XU Bide, WU Hao, MA Xunjun, HUANG Yanbo, MAO Yuanqing, ZHANG Jingwei, WANG Jinwu. Application of fluoroscopic stereophotogrammetric analysis in the detection of aseptic loosening of prostheses [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1061-1068. |
| [5] | QIAN Liheng, WEN Kailing, LIAO Yingna, LI Shuxin, NIE Huizhen. Study on the effect and mechanism of sorting nexin 1 on inhibiting the proliferation and migration of colorectal cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(9): 1124-1135. |
| [6] | HAN Yishan, XU Ziqi, TAO Mengyu, FAN Guangjian, YU Bo. PRMT6 promotes the proliferation and migration of breast cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 999-1010. |
| [7] | TAN Lu, SHEN Shaoming, HE Ping. Function and mechanism study of hypoxia-induced long non-coding RNA 68 in hepatocellular carcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 702-712. |
| [8] | LI Huxiao, LI Xiaotian, ZHAO Xuri, ZHANG Huanyu, ZHOU Wei, SONG Zhongchen. Effects of gingipain extract on the biological characteristics of oral squamous cell carcinoma cell HN6 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 161-168. |
| [9] | LUO Lange, ZHENG Chao, LEI Ming. Promotive effect of cancer-testis antigen CT57 on proliferation, invasion, migration and epithelial-mesenchymal transition of liver cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1335-1346. |
| [10] | GAO Kexing, LIAO Chunhua, LI Shengze, MA Shuangyu, HUANG Lei. Functional site analysis of mucin 1 in regulating the malignant characteristics of tumor cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1370-1382. |
| [11] | CHEN Ningdai, ZHOU Bingqian, CHEN Zheyi, CHEN Shiyu, ZHEN Yingxia. Effect of lysine demethylase 5C on renal carcinoma metastasis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 571-579. |
| [12] | HUANG Huayan, XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun. Advances in immunotherapy of advanced non-small cell lung cancer with EGFR mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 611-618. |
| [13] | YANG Wanli, SONG Juan, LI Bing, LAO Yimin. Deciphering the suppressive effects of CBX8 on prostate cancer cell invasion [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1507-1519. |
| [14] | ZHAO Zhuoming, LIU Zhenhao, LU Manman, ZHANG Yu, XU Linfeng, XIE Lu. Analysis of tumor-related features of non-small cell lung cancer based on TCR repertoire workflow [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1520-1528. |
| [15] | WANG Xiaoling, GE Mengkai, SHEN Shaoming. PTEN-regulated alternative splicing of FoxM1 affects tumor cell migration [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1339-1347. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||