
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (5): 630-638.doi: 10.3969/j.issn.1674-8115.2025.05.012
• Review • Previous Articles Next Articles
YU Kai1, SHUAI Zhewei2, HUANG Hongjun2, LUO Yan1,2(
)
Received:2024-12-10
Accepted:2025-02-18
Online:2025-05-28
Published:2025-05-15
Contact:
LUO Yan
E-mail:ly11087@rjh.com.cn
Supported by:CLC Number:
YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.05.012
| 1 | CROESE T, CASTELLANI G, SCHWARTZ M. Immune cell compartmentalization for brain surveillance and protection[J]. Nat Immunol, 2021, 22(9): 1083-1092. |
| 2 | SUBHRAMANYAM C S, WANG C, HU Q D, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Semin Cell Dev Biol, 2019, 94: 112-120. |
| 3 | XIN Y W, TIAN M, DENG S X, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis: microglia and neuroinflammation[J]. Mol Neurobiol, 2023, 60(3): 1369-1390. |
| 4 | CAFFAREL M M, BRAZA M S. Microglia and metastases to the central nervous system: victim, ravager, or something else?[J]. J Exp Clin Cancer Res, 2022, 41(1): 327. |
| 5 | GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845. |
| 6 | ELMORE M R P, NAJAFI A R, KOIKE M A, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2): 380-397. |
| 7 | SPITTAU B, DOKALIS N, PRINZ M. The role of TGFβ signaling in microglia maturation and activation[J]. Trends Immunol, 2020, 41(9): 836-848. |
| 8 | PAGANI F, PAOLICELLI R C, MURANA E, et al. Defective microglial development in the hippocampus of Cx3cr1 deficient mice[J]. Front Cell Neurosci, 2015, 9: 111. |
| 9 | BORST K, DUMAS A A, PRINZ M. Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208. |
| 10 | VIDAL-ITRIAGO A, RADFORD R A W, ARAMIDEH J A, et al. Microglia morphophysiological diversity and its implications for the CNS[J]. Front Immunol, 2022, 13: 997786. |
| 11 | BALL J B, GREEN-FULGHAM S M, WATKINS L R. Mechanisms of microglia-mediated synapse turnover and synaptogenesis[J]. Prog Neurobiol, 2022, 218: 102336. |
| 12 | WANG W B, LI Y Z, MA F L, et al. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer′s disease model by restoring BDNF signaling[J]. Brain Behav Immun, 2023, 113: 275-288. |
| 13 | STRIZOVA Z, BENESOVA I, BARTOLINI R, et al. M1/M2 macrophages and their overlaps: myth or reality?[J]. Clin Sci (Lond), 2023, 137(15): 1067-1093. |
| 14 | LONG Y, LI X Q, DENG J, et al. Modulating the polarization phenotype of microglia: a valuable strategy for central nervous system diseases[J]. Ageing Res Rev, 2024, 93: 102160. |
| 15 | BLITZ S E, KAPPEL A D, GESSLER F A, et al. Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: a double-edged sword[J]. Int J Mol Sci, 2022, 23(3): 1808. |
| 16 | SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer′s disease[J]. Lancet, 2021, 397(10284): 1577-1590. |
| 17 | TWAROWSKI B, HERBET M. Inflammatory processes in Alzheimer′s disease-pathomechanism, diagnosis and treatment: a review[J]. Int J Mol Sci, 2023, 24(7): 6518. |
| 18 | GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359. |
| 19 | MALKO P, SYED MORTADZA S A, MCWILLIAM J, et al. TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies[J]. Front Pharmacol, 2019, 10: 239. |
| 20 | DECOUT A, KATZ J D, VENKATRAMAN S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569. |
| 21 | JIN M H, SHIWAKU H, TANAKA H, et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation[J]. Nat Commun, 2021, 12(1): 6565. |
| 22 | BLEVINS H M, XU Y M, BIBY S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. |
| 23 | ISING C, VENEGAS C, ZHANG S S, et al. NLRP3 inflammasome activation drives tau pathology[J]. Nature, 2019, 575(7784): 669-673. |
| 24 | WANG C, FAN L, KHAWAJA R R, et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy[J]. Nat Commun, 2022, 13(1): 1969. |
| 25 | BEN-SHLOMO Y, DARWEESH S, LLIBRE-GUERRA J, et al. The epidemiology of Parkinson′s disease[J]. Lancet, 2024, 403(10423): 283-292. |
| 26 | KALIA L V, LANG A E. Parkinson′s disease[J]. Lancet, 2015, 386(9996): 896-912. |
| 27 | LIU S Y, QIAO H W, SONG T B, et al. Brain microglia activation and peripheral adaptive immunity in Parkinson′s disease: a multimodal PET study[J]. J Neuroinflammation, 2022, 19(1): 209. |
| 28 | CALABRESI P, MECHELLI A, NATALE G, et al. Alpha-synuclein in Parkinson′s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction[J]. Cell Death Dis, 2023, 14(3): 176. |
| 29 | MA C M, LIU Y, LI S, et al. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson′s disease[J]. CNS Neurosci Ther, 2023, 29(7): 2018-2035. |
| 30 | ZHOU X, ZHAO R, LV M F, et al. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression[J]. Brain Behav Immun, 2023, 109: 331-343. |
| 31 | LIU W W, WEI S Z, HUANG G D, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson′s disease mouse model[J]. FASEB J, 2020, 34(5): 6570-6581. |
| 32 | MARCUS R. What is multiple sclerosis?[J]. JAMA, 2022, 328(20): 2078. |
| 33 | KOCH-HENRIKSEN N, MAGYARI M. Apparent changes in the epidemiology and severity of multiple sclerosis[J]. Nat Rev Neurol, 2021, 17(11): 676-688. |
| 34 | ZIA S, RAWJI K S, MICHAELS N J, et al. Microglia diversity in health and multiple sclerosis[J]. Front Immunol, 2020, 11: 588021. |
| 35 | WOO M S, ENGLER J B, FRIESE M A. The neuropathobiology of multiple sclerosis[J]. Nat Rev Neurosci, 2024, 25(7): 493-513. |
| 36 | ZHANG Y H, HOU B H, LIANG P Y, et al. TRPV1 channel mediates NLRP3 inflammasome-dependent neuroinflammation in microglia[J]. Cell Death Dis, 2021, 12(12): 1159. |
| 37 | SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. |
| 38 | SONNEVILLE R, DE MONTMOLLIN E, POUJADE J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy[J]. Intensive Care Med, 2017, 43(8): 1075-1084. |
| 39 | YAN X Q, YANG K Y, XIAO Q, et al. Central role of microglia in sepsis-associated encephalopathy: from mechanism to therapy[J]. Front Immunol, 2022, 13: 929316. |
| 40 | GAO Q Z, HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation, 2021, 44(6): 2143-2150. |
| 41 | SHEN Y N, ZHANG Y, DU J Y, et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation, 2021, |
| 42 | FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. |
| 43 | WANG H Q, ZHANG S Y, XIE L L, et al. Neuroinflammation and peripheral immunity: focus on ischemic stroke[J]. Int Immunopharmacol, 2023, 120: 110332. |
| 44 | XIA Q, ZHAN G F, MAO M, et al. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury[J]. Exp Mol Med, 2022, 54(2): 180-193. |
| 45 | XIA Q, GAO S, HAN T R, et al. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1[J]. J Neuroinflammation, 2022, 19(1): 301. |
| 46 | PRAMANIK S, DEVI M H, CHAKRABARTY S, et al. Microglia signaling in health and disease: implications in sex-specific brain development and plasticity[J]. Neurosci Biobehav Rev, 2024, 165: 105834. |
| 47 | SUN Z Q, ZHANG X, SO K F, et al. Targeting microglia in Alzheimer′s disease: pathogenesis and potential therapeutic strategies[J]. Biomolecules, 2024, 14(7): 833. |
| 48 | LI X Y, LI Y X, JIN Y X, et al. Transcriptional and epigenetic decoding of the microglial aging process[J]. Nat Aging, 2023, 3(10): 1288-1311. |
| 49 | MCGARRY A, ROSANBALM S, LEINONEN M, et al. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson′s disease: a randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2024, 23(1): 37-45. |
| 50 | DUBOIS B, LÓPEZ-ARRIETA J, LIPSCHITZ S, et al. Masitinib for mild-to-moderate Alzheimer′s disease: results from a randomized, placebo-controlled, phase 3, clinical trial[J]. Alzheimers Res Ther, 2023, 15(1): 39. |
| 51 | ZHAO Y J, WU X L, LI X G, et al. TREM2 is a receptor for β-amyloid that mediates microglial function[J]. Neuron, 2018, 97(5): 1023-1031.e7. |
| 52 | LONG H, SIMMONS A, MAYORGA A, et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer′s disease[J]. Alzheimers Res Ther, 2024, 16(1): 235. |
| 53 | ZHANG X L, SUBBANNA S, WILLIAMS C R O, et al. Anti-inflammatory action of BT75, a novel RARα agonist, in cultured microglia and in an experimental mouse model of Alzheimer′s disease[J]. Neurochem Res, 2023, 48(6): 1958-1970. |
| 54 | MA Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520. |
| 55 | LONNEMANN N, HOSSEINI S, MARCHETTI C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer′s disease[J]. Proc Natl Acad Sci USA, 2020, 117(50): 32145-32154. |
| 56 | GORDON R, ALBORNOZ E A, CHRISTIE D C, et al. Inflammasome inhibition prevents α- synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066. |
| 57 | MCGINLEY M P, COHEN J A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions[J]. Lancet, 2021, 398(10306): 1184-1194. |
| 58 | QIN C, FAN W H, LIU Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway[J]. Stroke, 2017, 48(12): 3336-3346. |
| 59 | LUO J, FENG Y, LI M Y, et al. Repetitive transcranial magnetic stimulation improves neurological function and promotes the anti-inflammatory polarization of microglia in ischemic rats[J]. Front Cell Neurosci, 2022, 16: 878345. |
| 60 | ZONG X M, DONG Y, LI Y Y, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity[J]. Transl Stroke Res, 2020, 11(3): 450-467. |
| 61 | WALTER H L, PIKHOVYCH A, ENDEPOLS H, et al. Transcranial-direct-current-stimulation accelerates motor recovery after cortical infarction in mice: the interplay of structural cellular responses and functional recovery[J]. Neurorehabil Neural Repair, 2022, 36(10/11): 701-714. |
| [1] | YANG Le, ZHOU Yi, WANG Keyun, LAI Yali. Research on the improvement of cognitive impairment, endoplasmic reticulum stress and neuroinflammation in Alzheimer's disease by emodin [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 727-734. |
| [2] | LUO Wen, LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong. Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 233-240. |
| [3] | TANG Junqian, LI Benshang. Advances in the treatment of pediatric B-cell acute lymphoblastic leukemia with high-risk cytogenetics [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1390-1399. |
| [4] | WANG Xiaohong, FANG Yiru. Research progress on the neuroinflammation mechanisms in bipolar disorder [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 107-112. |
| [5] | CAI Qiangwei, SUN Feng, WU Wenyu, SHAO Fuming, GAO Zhengliang, JIN Shengkai. Transcriptional regulatory network analysis of microglia in multiple sclerosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 29-41. |
| [6] | ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 779-787. |
| [7] | ZHANG Yong, LI Weihong, CHENG Zhipeng, WANG bin, WANG Siheng, WANG Yubin. Research status of receptor-interacting protein kinase 1 in regulating cancer progression and immune response [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 788-794. |
| [8] | XU Wenhui, YANG Chang, LI Ruiqing, BIAN Jing, LI Xiayi, ZHENG Leizhen. Exploratory study of interferon regulatory factor 3 promoting proliferation and invasion related to colorectal cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 301-311. |
| [9] | DING Yanling, LI Jie, YUAN Jun, LI Yan. Research progress in targeted therapies of chronic lymphocytic leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 264-270. |
| [10] | TANG Sijie, MI Jianqing. Clinical advances in antibody-drug conjugates for hematological malignancies [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1607-1614. |
| [11] | FANG Xinyue, SHI Lan, XIA Siyi, WANG Jiaxuan, WU Yingli, HE Kejun. Research progress in Menin-MLL interaction and its inhibitors in MLL-rearranged leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1287-1298. |
| [12] | ZHOU Wanzhen, TENG Yincheng. Research progress of the role of non-canonical Wnt signaling pathway in ovarian cancer and its potential therapeutic implications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1056-1063. |
| [13] | ZHU Xiaochen, XIE Xinyi, ZHAO Xuri, XU Lina, HE Zhiyan, ZHOU Wei. Construction and characterization of mice with conditional knockout of Stat3 gene in microglia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 689-698. |
| [14] | MEI Yanqing, HAN Yujie, WENG Wenyun, ZHANG Lei, TANG Yujie. In vitro therapeutic effects and molecular mechanisms of targeted inhibition of CDK12/13 in high-grade gliomas [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 545-559. |
| [15] | XU Yinglian, TIAN Jing, ZHANG Xiang, ZHAO Shunying. Research progress in the roles of airway epithelial cells in the pathogenesis of asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 619-623. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||