
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (12): 1606-1619.doi: 10.3969/j.issn.1674-8115.2025.12.006
• Evidence-based medicine • Previous Articles
MA Huihua1,2, YAN Kuipo1(
), LIU Gang1, XU Yazhou1, ZHANG Lei1, SUN Yanqin1
Received:2025-04-17
Accepted:2025-06-17
Online:2025-12-28
Published:2025-12-28
Contact:
YAN Kuipo
E-mail:ykp19821122@163.com
Supported by:CLC Number:
MA Huihua, YAN Kuipo, LIU Gang, XU Yazhou, ZHANG Lei, SUN Yanqin. Causal relationship between gut microbiota and cardiovascular diseases: a bidirectional Mendelian randomization analysis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(12): 1606-1619.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.12.006
| GWAS data ID | Disease | Sample size/n | Case/n | Control/n | Population |
|---|---|---|---|---|---|
| ebi-a-GCST006414 | AF | 1 030 836 | 60 620 | 970 216 | European |
| ebi-a-GCST005195 | CAD | 547 261 | 122 733 | 424 528 | European |
| ebi-a-GCST008036 | Hypertension | 20 526 | 11 863 | 8 663 | European |
| ebi-a-GCST009541 | HF | 977 323 | 47 309 | 930 014 | European |
Tab 1 GWAS datasets for CVD
| GWAS data ID | Disease | Sample size/n | Case/n | Control/n | Population |
|---|---|---|---|---|---|
| ebi-a-GCST006414 | AF | 1 030 836 | 60 620 | 970 216 | European |
| ebi-a-GCST005195 | CAD | 547 261 | 122 733 | 424 528 | European |
| ebi-a-GCST008036 | Hypertension | 20 526 | 11 863 | 8 663 | European |
| ebi-a-GCST009541 | HF | 977 323 | 47 309 | 930 014 | European |
| Outcome | Exposure | MR method | SNP/n | β | se | OR (95%CI) | P value | Correct causal direction | P value (Steiger test) |
|---|---|---|---|---|---|---|---|---|---|
| AF | |||||||||
| Catenibacterium | IVW | 5 | 0.05 | 0.025 | 1.057 (1.005‒1.112) | 0.030 | True | 4.85×10-6 | |
| Victivallales | IVW | 8 | -0.06 | 0.023 | 0.939 (0.896‒0.984) | 0.008 | True | 1.52×10-6 | |
| Howardella | IVW | 10 | -0.06 | 0.019 | 0.939 (0.904‒0.977) | 0.001 | True | 3.04×10-5 | |
| Lachnospiraceae UCG008 | IVW | 11 | 0.04 | 0.025 | 1.051 (1.001‒1.104) | 0.047 | True | 2.52×10-7 | |
| Anaerostipes | IVW | 13 | -0.08 | 0.037 | 0.922 (0.857‒0.993) | 0.030 | True | 5.20×10-6 | |
| Bifidobacteriaceae | IVW | 11 | -0.08 | 0.034 | 0.916 (0.855‒0.980) | 0.011 | True | 1.42×10-5 | |
| Lentisphaeria | IVW | 8 | -0.06 | 0.024 | 0.936 (0.887‒0.983) | 0.003 | True | 3.96×10-6 | |
| Streptococcus | IVW | 15 | 0.08 | 0.039 | 1.089 (1.008‒1.177) | 0.029 | True | 9.37×10-6 | |
| Victivallis | IVW | 10 | 0.03 | 0.018 | 1.038 (1.001‒1.077) | 0.043 | True | 4.62×10-6 | |
| Odoribacter | IVW | 7 | -0.09 | 0.046 | 0.909 (0.831‒0.996) | 0.040 | True | 1.81×10-5 | |
| Intestinibacter | IVW | 15 | -0.06 | 0.031 | 0.933 (0.877‒0.993) | 0.028 | True | 2.28×10-6 | |
| Lentisphaerae | IVW | 9 | -0.07 | 0.022 | 0.926 (0.886‒0.968) | <0.001 | True | 5.06×10-6 | |
| Bifidobacteriales | IVW | 11 | -0.08 | 0.034 | 0.916 (0.855‒0.980) | 0.011 | True | 1.35×10-5 | |
| CAD | |||||||||
| Lactobacillales | IVW | 15 | -0.08 | 0.032 | 0.919 (0.862‒0.980) | 0.010 | True | 9.28×10-7 | |
| Veillonellaceae | IVW | 19 | 0.06 | 0.026 | 1.065 (1.011‒1.122) | 0.018 | True | 1.21×10-5 | |
| Parabacteroides | IVW | 6 | -0.14 | 0.050 | 0.866 (0.784‒0.956) | 0.004 | True | 6.31×10-5 | |
| Lachnospiraceae | IVW | 17 | 0.09 | 0.038 | 1.094 (1.012‒1.183) | 0.023 | True | 7.23×10-6 | |
| Lachnoclostridium | IVW | 13 | 0.08 | 0.039 | 1.093 (1.011‒1.181) | 0.025 | True | 9.14×10-5 | |
| Oxalobacter | IVW | 11 | 0.05 | 0.020 | 1.062 (1.019‒1.106) | 0.004 | True | 6.05×10-6 | |
| Odoribacter | IVW | 7 | 0.14 | 0.047 | 1.160 (1.056‒1.275) | 0.001 | True | 6.42×10-7 | |
| Hypertension | |||||||||
| Mollicutes RF9 | IVW | 13 | -0.16 | 0.068 | 0.851 (0.743‒0.974) | 0.019 | True | 7.23×10-5 | |
| Peptococcaceae | IVW | 9 | 0.20 | 0.086 | 1.230 (1.038‒1.458) | 0.016 | True | 2.07×10-5 | |
| Christensenellaceae R7 group | IVW | 10 | 0.19 | 0.100 | 1.218 (1.001‒1.483) | 0.049 | True | 9.97×10-5 | |
| Coriobacteriales | IVW | 14 | -0.21 | 0.085 | 0.803 (0.679‒0.950) | 0.010 | True | 0.001 | |
| Coriobacteriia | IVW | 14 | -0.21 | 0.085 | 0.803 (0.679‒0.950) | 0.010 | True | 0.002 | |
| Desulfovibrio | IVW | 10 | 0.15 | 0.062 | 1.167 (1.033‒1.318) | 0.012 | True | 0.007 | |
| Coriobacteriaceae | IVW | 14 | -0.21 | 0.085 | 0.803 (0.679‒0.950) | 0.010 | true | 0.007 | |
| Intestinibacter | IVW | 15 | -0.19 | 0.083 | 0.819 (0.696‒0.965) | 0.010 | True | 0.015 | |
| HF | |||||||||
| Ruminococcaceae UCG009 | IVW | 12 | 0.06 | 0.030 | 1.107 (1.009‒1.137) | 0.022 | True | 6.12×10-6 | |
| Eubacterium oxidoreducens group | IVW | 4 | 0.11 | 0.043 | 1.117 (1.026‒1.215) | 0.010 | True | 3.26×10-5 | |
| Bacillales | IVW | 9 | -0.04 | 0.022 | 0.955 (0.913‒0.998) | 0.010 | True | 5.84×10-6 | |
| Selenomonadales | IVW | 12 | 0.10 | 0.044 | 1.106 (1.013‒1.208) | 0.023 | True | 1.53×10-5 | |
| Anaerostipes | IVW | 13 | -0.10 | 0.043 | 0.899 (0.825‒0.974) | 0.013 | True | 3.77×10-6 | |
| Negativicutes | IVW | 12 | 0.10 | 0.044 | 1.107 (1.014‒1.208) | 0.023 | True | 4.48×10-5 | |
| Eubacterium eligens group | IVW | 7 | 0.13 | 0.057 | 1.139 (1.019‒1.274) | 0.022 | True | 6.43×10-6 | |
| Flavonifractor | IVW | 5 | 0.13 | 0.053 | 1.144 (1.031‒1.270) | 0.011 | True | 1.06×10-5 |
Tab 2 Causal relationship between gut microbiota and CVD based on IVW method
| Outcome | Exposure | MR method | SNP/n | β | se | OR (95%CI) | P value | Correct causal direction | P value (Steiger test) |
|---|---|---|---|---|---|---|---|---|---|
| AF | |||||||||
| Catenibacterium | IVW | 5 | 0.05 | 0.025 | 1.057 (1.005‒1.112) | 0.030 | True | 4.85×10-6 | |
| Victivallales | IVW | 8 | -0.06 | 0.023 | 0.939 (0.896‒0.984) | 0.008 | True | 1.52×10-6 | |
| Howardella | IVW | 10 | -0.06 | 0.019 | 0.939 (0.904‒0.977) | 0.001 | True | 3.04×10-5 | |
| Lachnospiraceae UCG008 | IVW | 11 | 0.04 | 0.025 | 1.051 (1.001‒1.104) | 0.047 | True | 2.52×10-7 | |
| Anaerostipes | IVW | 13 | -0.08 | 0.037 | 0.922 (0.857‒0.993) | 0.030 | True | 5.20×10-6 | |
| Bifidobacteriaceae | IVW | 11 | -0.08 | 0.034 | 0.916 (0.855‒0.980) | 0.011 | True | 1.42×10-5 | |
| Lentisphaeria | IVW | 8 | -0.06 | 0.024 | 0.936 (0.887‒0.983) | 0.003 | True | 3.96×10-6 | |
| Streptococcus | IVW | 15 | 0.08 | 0.039 | 1.089 (1.008‒1.177) | 0.029 | True | 9.37×10-6 | |
| Victivallis | IVW | 10 | 0.03 | 0.018 | 1.038 (1.001‒1.077) | 0.043 | True | 4.62×10-6 | |
| Odoribacter | IVW | 7 | -0.09 | 0.046 | 0.909 (0.831‒0.996) | 0.040 | True | 1.81×10-5 | |
| Intestinibacter | IVW | 15 | -0.06 | 0.031 | 0.933 (0.877‒0.993) | 0.028 | True | 2.28×10-6 | |
| Lentisphaerae | IVW | 9 | -0.07 | 0.022 | 0.926 (0.886‒0.968) | <0.001 | True | 5.06×10-6 | |
| Bifidobacteriales | IVW | 11 | -0.08 | 0.034 | 0.916 (0.855‒0.980) | 0.011 | True | 1.35×10-5 | |
| CAD | |||||||||
| Lactobacillales | IVW | 15 | -0.08 | 0.032 | 0.919 (0.862‒0.980) | 0.010 | True | 9.28×10-7 | |
| Veillonellaceae | IVW | 19 | 0.06 | 0.026 | 1.065 (1.011‒1.122) | 0.018 | True | 1.21×10-5 | |
| Parabacteroides | IVW | 6 | -0.14 | 0.050 | 0.866 (0.784‒0.956) | 0.004 | True | 6.31×10-5 | |
| Lachnospiraceae | IVW | 17 | 0.09 | 0.038 | 1.094 (1.012‒1.183) | 0.023 | True | 7.23×10-6 | |
| Lachnoclostridium | IVW | 13 | 0.08 | 0.039 | 1.093 (1.011‒1.181) | 0.025 | True | 9.14×10-5 | |
| Oxalobacter | IVW | 11 | 0.05 | 0.020 | 1.062 (1.019‒1.106) | 0.004 | True | 6.05×10-6 | |
| Odoribacter | IVW | 7 | 0.14 | 0.047 | 1.160 (1.056‒1.275) | 0.001 | True | 6.42×10-7 | |
| Hypertension | |||||||||
| Mollicutes RF9 | IVW | 13 | -0.16 | 0.068 | 0.851 (0.743‒0.974) | 0.019 | True | 7.23×10-5 | |
| Peptococcaceae | IVW | 9 | 0.20 | 0.086 | 1.230 (1.038‒1.458) | 0.016 | True | 2.07×10-5 | |
| Christensenellaceae R7 group | IVW | 10 | 0.19 | 0.100 | 1.218 (1.001‒1.483) | 0.049 | True | 9.97×10-5 | |
| Coriobacteriales | IVW | 14 | -0.21 | 0.085 | 0.803 (0.679‒0.950) | 0.010 | True | 0.001 | |
| Coriobacteriia | IVW | 14 | -0.21 | 0.085 | 0.803 (0.679‒0.950) | 0.010 | True | 0.002 | |
| Desulfovibrio | IVW | 10 | 0.15 | 0.062 | 1.167 (1.033‒1.318) | 0.012 | True | 0.007 | |
| Coriobacteriaceae | IVW | 14 | -0.21 | 0.085 | 0.803 (0.679‒0.950) | 0.010 | true | 0.007 | |
| Intestinibacter | IVW | 15 | -0.19 | 0.083 | 0.819 (0.696‒0.965) | 0.010 | True | 0.015 | |
| HF | |||||||||
| Ruminococcaceae UCG009 | IVW | 12 | 0.06 | 0.030 | 1.107 (1.009‒1.137) | 0.022 | True | 6.12×10-6 | |
| Eubacterium oxidoreducens group | IVW | 4 | 0.11 | 0.043 | 1.117 (1.026‒1.215) | 0.010 | True | 3.26×10-5 | |
| Bacillales | IVW | 9 | -0.04 | 0.022 | 0.955 (0.913‒0.998) | 0.010 | True | 5.84×10-6 | |
| Selenomonadales | IVW | 12 | 0.10 | 0.044 | 1.106 (1.013‒1.208) | 0.023 | True | 1.53×10-5 | |
| Anaerostipes | IVW | 13 | -0.10 | 0.043 | 0.899 (0.825‒0.974) | 0.013 | True | 3.77×10-6 | |
| Negativicutes | IVW | 12 | 0.10 | 0.044 | 1.107 (1.014‒1.208) | 0.023 | True | 4.48×10-5 | |
| Eubacterium eligens group | IVW | 7 | 0.13 | 0.057 | 1.139 (1.019‒1.274) | 0.022 | True | 6.43×10-6 | |
| Flavonifractor | IVW | 5 | 0.13 | 0.053 | 1.144 (1.031‒1.270) | 0.011 | True | 1.06×10-5 |
| Outcome | Exposure | Cochran's Q | MR-Egger intercept | |||||
|---|---|---|---|---|---|---|---|---|
| MR-Egger | IVW | Intercept | P value | |||||
| Q value | P value | Q value | P value | |||||
| AF | ||||||||
| Catenibacterium | 0.370 | 0.946 | 0.488 | 0.974 | 0.010 | 0.753 | ||
| Victivallales | 3.948 | 0.683 | 4.155 | 0.761 | 0.005 | 0.665 | ||
| Howardella | 7.364 | 0.497 | 7.622 | 0.572 | -0.006 | 0.624 | ||
| Lachnospiraceae UCG008 | 8.051 | 0.528 | 8.162 | 0.612 | 0.004 | 0.747 | ||
| Anaerostipes | 12.334 | 0.339 | 12.561 | 0.402 | -0.003 | 0.661 | ||
| Bifidobacteriaceae | 8.821 | 0.453 | 9.111 | 0.521 | 0.004 | 0.603 | ||
| Lentisphaeria | 3.948 | 0.683 | 4.155 | 0.761 | 0.005 | 0.665 | ||
| Streptococcus | 20.126 | 0.092 | 20.223 | 0.123 | 0.002 | 0.807 | ||
| Victivallis | 7.007 | 0.535 | 8.153 | 0.518 | 0.019 | 0.315 | ||
| Odoribacter | 3.621 | 0.605 | 4.634 | 0.591 | 0.010 | 0.360 | ||
| Intestinibacter | 14.962 | 0.309 | 17.041 | 0.253 | 0.010 | 0.203 | ||
| Lentisphaerae | 7.455 | 0.383 | 7.841 | 0.449 | 0.007 | 0.566 | ||
| Bifidobacteriales | 8.821 | 0.454 | 9.111 | 0.521 | 0.004 | 0.603 | ||
| CAD | ||||||||
| Lactobacillales | 13.551 | 0.406 | 14.344 | 0.424 | -0.005 | 0.398 | ||
| Veillonellaceae | 14.934 | 0.528 | 1.741 | 0.495 | 0.005 | 0.241 | ||
| Parabacteroides | 4.608 | 0.329 | 4.742 | 0.448 | 0.005 | 0.750 | ||
| Lachnospiraceae | 21.818 | 0.112 | 24.485 | 0.079 | -0.008 | 0.195 | ||
| Lachnoclostridium | 5.378 | 0.911 | 6.793 | 0.870 | 0.011 | 0.259 | ||
| Oxalobacter | 3.473 | 0.942 | 3.692 | 0.960 | -0.006 | 0.650 | ||
| Odoribacter | 4.080 | 0.537 | 5.288 | 0.507 | 0.012 | 0.321 | ||
| Hypertension | ||||||||
| Mollicutes RF9 | 3.784 | 0.975 | 0.711 | 0.877 | <0.001 | 0.957 | ||
| Peptococcaceae | 5.131 | 0.643 | 0.331 | 0.178 | 0.055 | 0.358 | ||
| Christensenellaceae R7 group | 6.448 | 0.597 | 7.960 | 0.538 | 0.008 | 0.575 | ||
| Coriobacteriales | 8.827 | 0.717 | 9.577 | 0.728 | 0.012 | 0.575 | ||
| Coriobacteriia | 8.827 | 0.717 | 9.577 | 0.728 | 0.013 | 0.145 | ||
| Desulfovibrio | 3.323 | 0.912 | 7.960 | 0.538 | 0.222 | 0.253 | ||
| Coriobacteriaceae | 8.827 | 0.717 | 9.577 | 0.728 | -0.020 | 0.403 | ||
| Intestinibacter | 19.114 | 0.119 | 21.572 | 0.087 | -0.020 | 0.403 | ||
| HF | ||||||||
| Ruminococcaceae UCG009 | 8.939 | 0.537 | 10.956 | 0.446 | 0.017 | 0.185 | ||
| Eubacterium oxidoreducens group | 2.451 | 0.293 | 2.483 | 0.478 | -0.002 | 0.887 | ||
| Bacillales | 2.705 | 0.910 | 2.870 | 0.942 | 0.006 | 0.697 | ||
| Selenomonadales | 4.459 | 0.924 | 5.180 | 0.922 | -0.007 | 0.415 | ||
| Anaerostipes | 9.973 | 0.532 | 10.057 | 0.610 | -0.002 | 0.777 | ||
| Negativicutes | 4.459 | 0.924 | 5.180 | 0.922 | -0.007 | 0.415 | ||
| Eubacterium eligens group | 1.547 | 0.907 | 6.428 | 0.376 | -0.038 | 0.078 | ||
| Flavonifractor | 2.919 | 0.404 | 2.919 | 0.404 | 0.002 | 0.903 | ||
Tab 3 Heterogeneity and horizontal pleiotropy analysis of the effect of gut microbiota on CVD
| Outcome | Exposure | Cochran's Q | MR-Egger intercept | |||||
|---|---|---|---|---|---|---|---|---|
| MR-Egger | IVW | Intercept | P value | |||||
| Q value | P value | Q value | P value | |||||
| AF | ||||||||
| Catenibacterium | 0.370 | 0.946 | 0.488 | 0.974 | 0.010 | 0.753 | ||
| Victivallales | 3.948 | 0.683 | 4.155 | 0.761 | 0.005 | 0.665 | ||
| Howardella | 7.364 | 0.497 | 7.622 | 0.572 | -0.006 | 0.624 | ||
| Lachnospiraceae UCG008 | 8.051 | 0.528 | 8.162 | 0.612 | 0.004 | 0.747 | ||
| Anaerostipes | 12.334 | 0.339 | 12.561 | 0.402 | -0.003 | 0.661 | ||
| Bifidobacteriaceae | 8.821 | 0.453 | 9.111 | 0.521 | 0.004 | 0.603 | ||
| Lentisphaeria | 3.948 | 0.683 | 4.155 | 0.761 | 0.005 | 0.665 | ||
| Streptococcus | 20.126 | 0.092 | 20.223 | 0.123 | 0.002 | 0.807 | ||
| Victivallis | 7.007 | 0.535 | 8.153 | 0.518 | 0.019 | 0.315 | ||
| Odoribacter | 3.621 | 0.605 | 4.634 | 0.591 | 0.010 | 0.360 | ||
| Intestinibacter | 14.962 | 0.309 | 17.041 | 0.253 | 0.010 | 0.203 | ||
| Lentisphaerae | 7.455 | 0.383 | 7.841 | 0.449 | 0.007 | 0.566 | ||
| Bifidobacteriales | 8.821 | 0.454 | 9.111 | 0.521 | 0.004 | 0.603 | ||
| CAD | ||||||||
| Lactobacillales | 13.551 | 0.406 | 14.344 | 0.424 | -0.005 | 0.398 | ||
| Veillonellaceae | 14.934 | 0.528 | 1.741 | 0.495 | 0.005 | 0.241 | ||
| Parabacteroides | 4.608 | 0.329 | 4.742 | 0.448 | 0.005 | 0.750 | ||
| Lachnospiraceae | 21.818 | 0.112 | 24.485 | 0.079 | -0.008 | 0.195 | ||
| Lachnoclostridium | 5.378 | 0.911 | 6.793 | 0.870 | 0.011 | 0.259 | ||
| Oxalobacter | 3.473 | 0.942 | 3.692 | 0.960 | -0.006 | 0.650 | ||
| Odoribacter | 4.080 | 0.537 | 5.288 | 0.507 | 0.012 | 0.321 | ||
| Hypertension | ||||||||
| Mollicutes RF9 | 3.784 | 0.975 | 0.711 | 0.877 | <0.001 | 0.957 | ||
| Peptococcaceae | 5.131 | 0.643 | 0.331 | 0.178 | 0.055 | 0.358 | ||
| Christensenellaceae R7 group | 6.448 | 0.597 | 7.960 | 0.538 | 0.008 | 0.575 | ||
| Coriobacteriales | 8.827 | 0.717 | 9.577 | 0.728 | 0.012 | 0.575 | ||
| Coriobacteriia | 8.827 | 0.717 | 9.577 | 0.728 | 0.013 | 0.145 | ||
| Desulfovibrio | 3.323 | 0.912 | 7.960 | 0.538 | 0.222 | 0.253 | ||
| Coriobacteriaceae | 8.827 | 0.717 | 9.577 | 0.728 | -0.020 | 0.403 | ||
| Intestinibacter | 19.114 | 0.119 | 21.572 | 0.087 | -0.020 | 0.403 | ||
| HF | ||||||||
| Ruminococcaceae UCG009 | 8.939 | 0.537 | 10.956 | 0.446 | 0.017 | 0.185 | ||
| Eubacterium oxidoreducens group | 2.451 | 0.293 | 2.483 | 0.478 | -0.002 | 0.887 | ||
| Bacillales | 2.705 | 0.910 | 2.870 | 0.942 | 0.006 | 0.697 | ||
| Selenomonadales | 4.459 | 0.924 | 5.180 | 0.922 | -0.007 | 0.415 | ||
| Anaerostipes | 9.973 | 0.532 | 10.057 | 0.610 | -0.002 | 0.777 | ||
| Negativicutes | 4.459 | 0.924 | 5.180 | 0.922 | -0.007 | 0.415 | ||
| Eubacterium eligens group | 1.547 | 0.907 | 6.428 | 0.376 | -0.038 | 0.078 | ||
| Flavonifractor | 2.919 | 0.404 | 2.919 | 0.404 | 0.002 | 0.903 | ||
| [1] | LI Y, CAO G Y, JING W Z, et al. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990‒2019: findings from 2019 global burden of disease study[J]. Eur J Prev Cardiol, 2023, 30(3): 276-286. |
| [2] | 刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 临床心血管病杂志, 2024, 40(8): 599-616. |
| LIU M B, HE X Y, YANG X H, et al. Interpretation of Report on Cardiovascular Health and Diseases in China 2023[J]. Journal of Clinical Cardiology, 2024, 40(8): 599-616. | |
| [3] | SHI H Q, TER HORST R, NIELEN S, et al. The gut microbiome as mediator between diet and its impact on immune function[J]. Sci Rep, 2022, 12(1): 5149. |
| [4] | OJO O, FENG Q Q, OJO O O, et al. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials[J]. Nutrients, 2020, 12(11): 3239. |
| [5] | TELLE-HANSEN V H, GAUNDAL L, BASTANI N, et al. Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels: a randomized controlled trial in healthy individuals[J]. Lipids Health Dis, 2022, 21(1): 92. |
| [6] | WANG Z N, KLIPFELL E, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. |
| [7] | UFNAL M, JAZWIEC R, DADLEZ M, et al. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin Ⅱ in rats[J]. Can J Cardiol, 2014, 30(12): 1700-1705. |
| [8] | LI D D, LU Y, YUAN S, et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis[J]. Am J Clin Nutr, 2022, 116(1): 230-243. |
| [9] | BÄCKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. |
| [10] | SAVAGE D C. Associations of indigenous microorganisms with gastrointestinal mucosal epithelia[J]. Am J Clin Nutr, 1970, 23(11): 1495-1501. |
| [11] | MAZMANIAN S K, LIU C H, TZIANABOS A O, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell, 2005, 122(1): 107-118. |
| [12] | LI M, WANG B H, ZHANG M H, et al. Symbiotic gut microbes modulate human metabolic phenotypes[J]. Proc Natl Acad Sci USA, 2008, 105(6): 2117-2122. |
| [13] | WANG H R, REN S J, LV H L, et al. Gut microbiota from mice with cerebral ischemia-reperfusion injury affects the brain in healthy mice[J]. Aging (Albany NY), 2021, 13(7): 10058-10074. |
| [14] | WAN S Z, NIE Y, ZHANG Y, et al. Gut microbial dysbiosis is associated with profibrotic factors in liver fibrosis mice[J]. Front Cell Infect Microbiol, 2020, 10: 18. |
| [15] | JIE Z Y, XIA H H, ZHONG S L, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nat Commun, 2017, 8(1): 845. |
| [16] | TANG W H W, BÄCKHED F, LANDMESSER U, et al. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(16): 2089-2105. |
| [17] | WAN Y, WANG F L, YUAN J H, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial[J]. Gut, 2019, 68(8): 1417-1429. |
| [18] | DELANNOY-BRUNO O, DESAI C, RAMAN A S, et al. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans[J]. Nature, 2021, 595(7865): 91-95. |
| [19] | SMITH G D, EBRAHIM S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?[J]. Int J Epidemiol, 2003, 32(1): 1-22. |
| [20] | DAVEY SMITH G, HEMANI G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies[J]. Hum Mol Genet, 2014, 23(R1): R89-R98. |
| [21] | SEKULA P, DEL GRECO M F, PATTARO C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11): 3253-3265. |
| [22] | WANG J, KURILSHIKOV A, RADJABZADEH D, et al. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative[J]. Microbiome, 2018, 6(1): 101. |
| [23] | KURILSHIKOV A, MEDINA-GOMEZ C, BACIGALUPE R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition[J]. Nat Genet, 2021, 53(2): 156-165. |
| [24] | WU F S, HUANG Y, HU J L, et al. Mendelian randomization study of inflammatory bowel disease and bone mineral density[J]. BMC Med, 2020, 18(1): 312. |
| [25] | BURGESS S, BUTTERWORTH A, THOMPSON S G. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. |
| [26] | LONG Y W, TANG L H, ZHOU Y Y, et al. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study[J]. BMC Med, 2023, 21(1): 66. |
| [27] | LAWLOR D A, HARBORD R M, STERNE J A C, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 2008, 27(8): 1133-1163. |
| [28] | HEMANI G, TILLING K, DAVEY SMITH G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data[J]. PLoS Genet, 2017, 13(11): e1007081. |
| [29] | TANG W H, WANG Z N, LEVISON B S, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368(17): 1575-1584. |
| [30] | KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. |
| [31] | WAHLSTRÖM A, SAYIN S I, MARSCHALL H U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. |
| [32] | GUO Y, LUO S Y, YE Y X, et al. Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients[J]. J Clin Endocrinol Metab, 2021, 106(1): 64-79. |
| [33] | KOREN O, SPOR A, FELIN J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis[J]. Proc Natl Acad Sci USA, 2011, 108(Suppl 1): 4592-4598. |
| [34] | HUTCHINSON A N, TINGÖ L N, BRUMMER R J. The potential effects of probiotics and ω-3 fatty acids on chronic low-grade inflammation[J]. Nutrients, 2020, 12(8): 2402. |
| [35] | BRON P A, KLEEREBEZEM M, BRUMMER R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. Br J Nutr, 2017, 117(1): 93-107. |
| [36] | RUSCICA M, PAVANELLO C, GANDINI S, et al. Nutraceutical approach for the management of cardiovascular risk—a combination containing the probiotic Bifidobacterium longum BB536 and red yeast rice extract: results from a randomized, double-blind, placebo-controlled study[J]. Nutr J, 2019, 18(1): 13. |
| [37] | LIU J L, AN N, MA C, et al. Correlation analysis of intestinal flora with hypertension[J]. Exp Ther Med, 2018, 16(3): 2325-2330. |
| [38] | MAYERHOFER C C K, KUMMEN M, HOLM K, et al. Low fibre intake is associated with gut microbiota alterations in chronic heart failure[J]. ESC Heart Fail, 2020, 7(2): 456-466. |
| [39] | WANG M, XIONG H, LU L, et al. Serum lipopolysaccharide is associated with the recurrence of atrial fibrillation after radiofrequency ablation by increasing systemic inflammation and atrial fibrosis[J]. Oxid Med Cell Longev, 2022, 2022: 2405972. |
| [40] | KONG B, FU H, XIAO Z, et al. Gut microbiota dysbiosis induced by a high-fat diet increases susceptibility to atrial fibrillation[J]. Can J Cardiol, 2022, 38(12): 1962-1975. |
| [41] | INZAUGARAT M E, JOHNSON C D, HOLTMANN T M, et al. NLR family pyrin domain-containing 3 inflammasome activation in hepatic stellate cells induces liver fibrosis in mice[J]. Hepatology, 2019, 69(2): 845-859. |
| [42] | LIU P N, YU S S, LIU J R, et al. Effects of Lactobacillus on hyperlipidemia in high-fat diet-induced mouse model[J]. Arch Med Sci, 2020, 19(3): 792-799. |
| [43] | CHEN L H, LIU W E, LI Y M, et al. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process[J]. Int Immunopharmacol, 2013, 17(1): 108-115. |
| [44] | HUANG Y, WANG J F, QUAN G H, et al. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice[J]. Appl Environ Microbiol, 2014, 80(24): 7496-7504. |
| [45] | AHN H Y, KIM M, CHAE J S, et al. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia[J]. Atherosclerosis, 2015, 241(2): 649-656. |
| [46] | 李亚梦, 崔美泽, 孙婧, 等. 肠道菌群及其代谢产物氧化三甲胺: 冠心病治疗的新靶点[J]. 生物工程学报, 2021, 37(11): 3745-3756. |
| LI Y M, CUI M Z, SUN J, et al. Gut microbiota and its metabolite trimethylamine-N-oxide (TMAO): a novel regulator in coronary artery disease[J]. Chinese Journal of Biotechnology, 2021, 37(11): 3745-3756. | |
| [47] | KATSIMICHAS T, THEOFILIS P, TSIOUFIS K, et al. Gut microbiota and coronary artery disease: current therapeutic perspectives[J]. Metabolites, 2023, 13(2): 256. |
| [48] | WANG Y, XU Y Y, YANG M, et al. Butyrate mitigates TNF-α-induced attachment of monocytes to endothelial cells[J]. J Bioenerg Biomembr, 2020, 52(4): 247-256. |
| [49] | CHEN W J, ZHANG S, WU J F, et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis[J]. Clin Chim Acta, 2020, 507: 236-241. |
| [50] | YU Y J, RAKA F, ADELI K. The role of the gut microbiota in lipid and lipoprotein metabolism[J]. J Clin Med, 2019, 8(12): 2227. |
| [51] | TORTELOTE G G. Therapeutic strategies for hypertension: exploring the role of microbiota-derived short-chain fatty acids in kidney physiology and development[J]. Pediatr Nephrol, 2025. |
| [52] | LUO Q, HU Y L, CHEN X, et al. Effects of gut microbiota and metabolites on heart failure and its risk factors: a two-sample Mendelian randomization study[J]. Front Nutr, 2022, 9: 899746. |
| [53] | CHIONCEL O, AMBROSY A P. Trimethylamine N-oxide and risk of heart failure progression: marker or mediator of disease[J]. Eur J Heart Fail, 2019, 21(7): 887-890. |
| [54] | SUN X L, JIAO X F, MA Y R, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome[J]. Biochem Biophys Res Commun, 2016, 481(1/2): 63-70. |
| [55] | KEITEL V, REINEHR R, GATSIOS P, et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells[J]. Hepatology, 2007, 45(3): 695-704. |
| [56] | ROMANO K A, MARTINEZ-DEL CAMPO A, KASAHARA K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290.e7. |
| [1] | LI Long, ZHAO Xia, JIN Shan, LI Zeying, LÜ Fuqiang, PANG Lijuan, LIU Kejian. Deciphering the protective role of AZGP1 in heart failure through Mendelian randomization [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(8): 1035-1045. |
| [2] | YAN Junhao, GUO Xiaolei, LUO Zhaofeng, TANG Jian, WANG Zheng. Mendelian randomization analysis of causal relationship between celiac disease and autoimmune thyroid disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 766-773. |
| [3] | XU Ling, HUANGFU Yuchan, SHEN Lisong, MA Yanhui. Causal association between plasma phosphatidylethanolamine and risk of colorectal adenocarcinoma: a two-sample Mendelian randomization study [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 605-613. |
| [4] | ZHANG Huihua, GAN Jing, HOU Miaomiao, LU Na. Bidirectional Mendelian randomization study of the relationship between brain imaging-derived phenotypes and obstructive sleep apnea [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 468-475. |
| [5] | ZHANG Yingying, ZHANG Junyao, SONG Jiwei, WANG Shengjie, YAO Junyan. Two-sample Mendelian randomization study on the causal association between air pollution and Alzheimer′s disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 87-94. |
| [6] | YU Yang, MENG Dan, QIU Yiwen, YUAN Jian, ZHU Yingjie. Analysis of impact of type 1 diabetes on colorectal cancer by using two-sample Mendelian randomization [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 755-761. |
| [7] | LI Ping, JIANG Huiru, YE Mengyue, WANG Yayu, CHEN Xiaoyu, YUAN Ancai, XU Wenjie, DAI Huimin, CHEN Xi, YAN Xiaoxiang, TU Shengxian, ZHENG Yuanqi, ZHANG Wei, PU Jun. Analysis of epidemiological characteristics of risk factors for cardiovascular diseases and malignant tumors based on the Shanghai community elderly cohort [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 617-625. |
| [8] | DU Yage, LU Yanhui, AN Yu, SONG Ying, ZHENG Jie. Research progress in mechanisms of gut microbiota in diabetic cognitive impairment and its targeted intervention [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 494-500. |
| [9] | MA Jinqian, FAN Pianpian, ZHENG Tao, ZHANG Lin, CHEN Yuanzhi, SHEN Jian, OUYANG Fengxiu. Relationship among maternal gut, vaginal microbiota and microbiota in meconium and vernix caseosa in newborns [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 50-63. |
| [10] | GAO Yu, YIN Shan, PANG Yue, LIANG Wenyi, LIU Yumin. Effect of rhubarb on gut microbiota-host co-metabolism in rats [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 997-1007. |
| [11] | WEN Yajin, HE Wen, HAN Xiao, ZHANG Xiaobo. Exploratory analysis of gut microbiota differences in childhood asthma with different severity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 655-664. |
| [12] | GAO Xiong, ZHANG Qiuxia, YANG Miaomiao, LUO Wei, WANG Yuegang, XIU Jiancheng. Causal relationship between atrial fibrillation and cognitive impairment: a Mendelian randomization study [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1359-1365. |
| [13] | WANG Jie, WU Hui, LU Lingpeng, YANG Kefeng, ZHU Jie, ZHOU Hengyi, YAO Die, GAO Ya, FENG Yuting, LIU Yuhong, JIA Jie. Dynamic changes in gut microbiota of women with gestational diabetes mellitus and the correlation with blood glucose, blood lipid and diet [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1336-1346. |
| [14] | LU Yu, WANG Hao, BA Qian. Role of gut microbiota in hepatocellular carcinoma: cancer occurrence, progresses and treatments [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 939-944. |
| [15] | Xieyire·HAMULATI , ZHAO Qian, LI Cheng, SONG Ning, WANG Ying, Gulijiehere·TUERXUN , PU Jun, YANG Yining, LI Xiaomei. Clinical characteristics and health economics evaluation of real-world-based ischemic cardiovascular and cerebrovascular co-morbidities [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 778-785. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||