上海交通大学学报(医学版), 2023, 43(11): 1450-1456 doi: 10.3969/j.issn.1674-8115.2023.11.014

综述

干细胞修复感觉神经损伤的研究进展

陈惠东,, 张云龙, 张志坚, 华清泉,

武汉大学人民医院耳鼻咽喉头颈外科,武汉 430060

Advances in stem cell therapy for sensory nerve injury

CHEN Huidong,, ZHANG Yunlong, ZHANG Zhijian, HUA Qingquan,

Department of Otorhinolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, China

通讯作者: 华清泉,电子信箱:hqqrm@sina.com

编委: 崔黎明

收稿日期: 2023-04-06   接受日期: 2023-07-17   网络出版日期: 2023-11-28

基金资助: 国家自然科学基金.  81271073

Corresponding authors: HUA Qingquan, E-mail:hqqrm@sina.com.

Received: 2023-04-06   Accepted: 2023-07-17   Online: 2023-11-28

作者简介 About authors

陈惠东(1995—),女,住院医师,博士;电子信箱:2012302180163@whu.edu.cn。 E-mail:2012302180163@whu.edu.cn

摘要

感觉神经属于周围神经系统的传入神经部分。它们的作用是接受机体内外刺激,传入中枢,形成感觉或反射。外伤、肿瘤侵犯、手术损伤等原因,均可导致感觉神经受损。感觉神经损伤可能会使患者的某些感觉器官功能减退或丧失,如视神经、听神经等重要感觉神经在受损后会给患者生活质量带来严重影响。目前临床上修复感觉神经的方法主要是自体神经移植,但其应用受到各种因素限制,神经功能的恢复效果也常常有限。干细胞具有多向分化潜能,可以分化成施万细胞,继而分泌神经营养因子促进轴突生长和髓鞘再生,施万细胞定向增殖形成宾格尔带,引导神经再生。干细胞也可以分化为神经元,构筑神经缺损的修复材料,是神经修复的理想选择。目前,以干细胞为基础,结合若干关键性的生物技术,例如利用生物聚合或人工合成的表面微图案化的神经导管实现神经缺损的桥接、利用微球实现细胞外基质蛋白和神经营养因子控制性释放等,形成的组织工程学技术正被广泛研究,并取得了一定的成果。该文就干细胞在几种主要的感觉神经如视神经、嗅神经、蜗神经及坐骨神经的感觉神经纤维等损伤修复中的研究进展进行综述,期望为干细胞的神经修复提供新的视角,拓宽干细胞在神经修复中的临床前研究,为后续的临床应用提供参考。

关键词: 感觉神经 ; 周围神经 ; 干细胞 ; 神经修复

Abstract

Sensory nerves belong to the afferent nerve part of the peripheral nervous system. Their role is to accept the stimuli inside and outside the body and transmit them to the center nerve system to form sensations or reflexes. Sensory nerve damage can be caused by trauma, tumor invasion, surgical injury, etc. Sensory nerve injury may cause decline or loss of some sensory organs function in patients. Damage of important sensory nerves such as optic nerves and auditory nerves can bring profound troubles to patients' lives. So far, the main clinical method to repair sensory nerves is autologous nerve transplantation. However, its application is limited by various factors, and the recovery effect of nerve function is often limited. Stem cells have the potential of multi-directional differentiation, which can differentiate into Schwann cells, and then secrete neurotrophic factors to promote axonal growth and myelin regeneration. Schwann cells directionally proliferate and form Büngner zones which guide nerve regeneration. Stem cells can also differentiate into neurons and construct nerve defect repair materials, which is an ideal choice for nerve repair. At present, the tissue engineering technology based on stem cells, combined with several key biotechnology, such as the use of biopolymerized or artificial surface micro-patterning nerve conduit to bridge nerve defects, and the use of microspheres to achieve the controlled release of extracellular matrix proteins and neurotrophic factors, is being widely studied and has achieved certain research results. This article reviews the research progress of stem cells in the repair of several major sensory nerves, such as optic nerves, olfactory nerves, cochlear nerves and sensory nerve fibers of sciatic nerve, expecting to provide a new perspective for neural repair of stem cells, broaden the preclinical research in nerve repair, and provide reference for follow-up clinical application.

Keywords: sensory nerve ; peripheral nerve ; stem cell ; nerve repair

PDF (1283KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈惠东, 张云龙, 张志坚, 华清泉. 干细胞修复感觉神经损伤的研究进展. 上海交通大学学报(医学版)[J], 2023, 43(11): 1450-1456 doi:10.3969/j.issn.1674-8115.2023.11.014

CHEN Huidong, ZHANG Yunlong, ZHANG Zhijian, HUA Qingquan. Advances in stem cell therapy for sensory nerve injury. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(11): 1450-1456 doi:10.3969/j.issn.1674-8115.2023.11.014

感觉神经又称知觉神经,是周围神经系统的传入神经。其末梢感觉神经纤维分布于感受器,另一端与脑或脊髓相连。感受器接受机体内外刺激,传入中枢,形成感觉或反射。除部分感觉神经如视神经、嗅神经和听神经,多数感觉神经纤维与运动神经纤维混合构成周围神经干。感觉神经损伤往往伴随着运动神经损伤,其中运动功能障碍严重者可造成终身残疾,带来生活质量的下降以及沉重的社会负担,是目前神经修复关注的重点;视神经、听神经等重要的感觉神经在受损后亦会给患者生活带来巨大的困扰。目前周围神经修复的“金标准”是自体神经移植1,然而供体部位功能丧失、痛性神经瘤以及神经错配引起的神经功能恢复不良等因素的存在,制约了它的应用。干细胞是指来自胚胎或成体,在特定条件下可以无限更新和增殖分化的一种细胞2。干细胞具有多向分化潜能,可分化成神经元、施万细胞等神经修复的重要成分3,是感觉神经修复的理想选择之一。目前,以干细胞为基础的组织工程学修复技术正被广泛研究,并取得了可喜的成果。本文综述干细胞在若干感觉神经修复中的应用进展,阐明其在感觉神经损伤修复中的潜力,为感觉神经损伤患者未来的治疗方法提供新的思路。

1 视神经损伤的干细胞治疗进展

视神经由视网膜神经节细胞(retinal ganglion cell,RGC)轴突组成。RGC通过视网膜中间神经元从光感受器接收视觉信息,并通过视神经传输到大脑4。RGC的再生能力较弱,视神经的损伤会引发RGC死亡,引起视神经萎缩,最终导致视力丧失。而干细胞来源的RGC替代治疗业已取得一些进展,未来有可能恢复因视神经病变而丧失的视力5

用于视神经损伤修复的干细胞来源有多种,但目前应用最广泛的是经玻璃体注射间充质干细胞(mesenchymal stem cell,MSC)6-14,这可能与MSC可以跨胚层分化,形成神经元和多种视网膜细胞有关。DA SILVA-JUNIOR等6将人脐带胶质来源的MSC经玻璃体注射移植到视神经钳夹伤大鼠中,发现可显著缓解RGC的减少,并可明显促进新生轴突向视交叉生长。不同类型MSC对视神经的修复效果存在差别。MEAD等7比较了牙髓间充质干细胞(dental pulp stem cell,DPSC)与骨髓间充质干细胞(bone marrow mesenchymal stem cell,BMSC)在视神经损伤后对RGC和视神经的修复作用的差别。该研究结果发现DPSC组神经生长因子(nerve growth factor,NGF)、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、神经营养因子3(neurotrophin-3,NT3)的浓度显著高于BMSC组,体内实验证实视网膜神经纤维层厚度和新生轴突生长关联蛋白43(growth-associated protein-43,GAP43)的表达水平增加,证明DPSC的治疗效果优于BMSC。

除玻璃体注射外,其他移植途径也取得了积极的治疗效果。经血管途径移植时,尽管由于血-视网膜屏障的限制,干细胞不能到达视网膜,但对视神经损伤修复也有明显改善。CHUNG等8在视神经挤压伤后经颈内动脉移植人绒毛膜板来源的MSC,发现轴突存活率显著增高,相应信号转导因子——缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)也相应升高,提示人绒毛膜板来源的MSC通过涉及HIF-α的系统伴随机制发挥神经保护作用。PARK等14把人多能干细胞衍生的神经祖细胞(human pluripotent stem cell-derived neuronal progenital cell,NPC)和人胎盘来源的间充质干细胞(human placenta-derived mesenchymal stem cell,hPMSC)经腱下腔注射到视神经钳夹伤大鼠体内,发现2组视神经中BDNF的表达升高,注射后4周时视网膜中脑特异性POU结构域同源盒基因3a(brain specific homeobox/POU domain protein 3a,Brn3a)和Ⅲ类β微管蛋白(β tubulinⅢ)的表达显著增强,说明NPC与PSC有类似的神经保护效果。

MESENTIER-LOURO等15则对视神经损伤后MSC治疗的长期效果进行了探讨。在大鼠视神经夹伤后,于玻璃体内注射大鼠间充质干细胞(rat mesenchymal stem cell,rMSC),对照组注射赋形剂;分别于注射60 d及240 d后对RGC存活、轴突再生及与靶器官重连进行分析,发现注射60 d后rMSC组上丘脑中神经生长因子诱导基因A(nerve growth factor-induced gene A,NGFI-A)的水平较对照组增加了1倍,提示与视觉中枢建立联系;然而注射240 d后其与对照组相当,表明新形成的突触退化,动物没有恢复视觉行为,这也说明rMSC移植后视网膜神经节细胞与其靶器官的重新连接是短暂的。

关于MSC修复视神经的机制,目前主要认为与直接分泌或通过外泌体递送神经营养因子有关,也有学者认为其与通过核转录因子κB(nuclear transcription factor-κB,NF-κB)等途径抑制炎症反应、上调营养因子有关6-71014。MEAD等9用BMSC外泌体处理体外培养的视网膜细胞,免疫组织化学结果显示其具有显著的神经保护作用和轴突生长效果;敲除argonaute-2蛋白(1种miRNA的关键效应分子)后,BMSC外泌体的上述效果被减弱,证明BMSC外泌体通过miRNA的作用向视网膜递送营养因子。PARK等12使用已建立的视神经压迫模型,验证了hPMSC的神经保护作用,并发现NF-κB蛋白通过上调hPMSC调控的靶蛋白Ermin和Brn3a的表达介导神经保护途径。WANG等13通过比较脂肪间充质干细胞(adipose-derived stem cell,ADSC)移植前后视神经闪光视觉诱发电位(flash-visual evoked potential,F-VEP)的变化证实了其神经保护作用,进一步检测提示ADSC移植后Toll样受体4(Toll-like receptor 4,TLR4)通路相关蛋白,如巨噬细胞分子1(macrophage-1,MAC1)、髓样分化因子88(myeloid differentiation factor 88,MYD88)等的表达水平较低,说明ADSC植入能抑制视神经损伤后的炎症反应,这也可能是MSC神经保护作用的机制之一。

目前干细胞在视神经治疗上取得了一些进展,但仅停留在视觉通路相关结构的恢复;所建立的突触连接仅可维持较短时间,未能检测到视力提高。此外,该领域尚有许多问题,比如干细胞植入时机的把控,移植到体内可存活多长时间,修复作用主要依赖于分化为其他类型细胞还是分泌细胞因子激活相应通路调节下游蛋白,如何建立稳定可靠的靶向连接等,均有待于进一步探索。

2 嗅神经损伤的干细胞治疗进展

嗅觉障碍是常见的感觉器官疾病,它可由嗅觉神经元的退化以及嗅球或嗅皮层的退化引起16。不同于视神经,嗅觉感觉神经元有较强的自我修复能力,它不断被来自嗅黏膜基底层的嗅觉干细胞(olfactory ectomesenchymal stem cell,OE-MSC)所分化取代;新的神经元与延髓建立连接,可以在有毒物质等诱导的多种损伤中完全恢复组织结构和功能的完整性17。这一过程如果因病毒感染或嗅神经横断等原因被干扰,则可能会出现嗅觉的永久丧失。理论上,恢复嗅觉神经上皮中干细胞的数量或修复神经功能可能是治疗嗅觉丧失的有效方法,而干细胞替代治疗是颇具希望的治疗方法之一。

嗅上皮位于鼻腔嗅区,与外界相通,因而干细胞既可以经血管移植,还可经鼻移植到达损伤处发挥修复作用18-23。KIM等18将鼠源性ADSC经尾静脉注入单侧嗅神经切断的大鼠体内,1个月后嗅觉标记蛋白(olfactory marker protein,OMP)的含量较未治疗组显著提高,移植组横断侧OMP的表达与非横断侧相比仍然较低,提示嗅觉功能部分恢复。NODA等19将绿色荧光蛋白(GFP)标记的小鼠骨髓移植到接受致死剂量辐射的小鼠中,发现30 d内嗅球中GFP阳性细胞持续增加。JO等20把BMSC经鼻植入被TX-100诱导而嗅觉上皮(olfactory epithelium,OE)变性的大鼠体内,4周时OMP表达明显增加,行为测试的搜索时间明显缩短,表明BMSC改善OE和嗅觉的恢复。

目前认为干细胞修复OE的机制主要是分化为OE组成细胞以及营养因子的分泌。KIM等18的研究表明,OMP与内皮细胞标志物血管性血友病因子(von Willebrand factor,vWF)和ADSC共定位,说明ADSC分化为嗅觉神经元和OE细胞来修复嗅觉损伤。NODA等19的研究中,GFP阳性细胞大部分具有小胶质细胞特性,少数有簇状细胞特性,提示修复机制可能与干细胞形成小胶质细胞有关。在JO等20的研究中,向TX-100诱导嗅觉上皮变性的大鼠体内植入BMSC 2周后发现NGF和BDNF表达增加,随后OMP的表达也升高,考虑BMSC的修复作用与其分泌NGF和BDNF有关。此外,有研究表明,可通过其他因素干预干细胞修复过程间接促进嗅觉损伤的恢复。NISHIZAKI等21将BMSC经尾静脉移植入甲巯咪唑所致OE损伤模型小鼠,并在不同时间(2、5、10 d)给予粒细胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)干预,1个月后发现GFP标志物与OMP及GAP43共定位,提示移植细胞已分化为嗅觉神经元并促进轴突再生,且G-CSF早期干预(2 d)移植率较高,表明G-CSF有助于显著提高BMSC的移植存活率。

目前干细胞治疗嗅神经损伤的研究较少,虽然经静脉及嗅区移植干细胞修复嗅神经损伤取得了一定的研究成果,但治疗的安全性、有效性、远期预后以及具体机制是通过分化增殖替代还是通过外泌体促进修复尚无定论,有待进一步研究。

3 蜗神经损伤的干细胞治疗

蜗神经机械损伤导致听力减退是桥小脑区(cerebellopontine angle,CPA)肿瘤术后面临的诸多挑战之一。据报道,听神经瘤术后听力保留整体欠佳,T1(听神经瘤在内听道内)、T2(肿瘤位于内听道内外)、T3(肿瘤位于桥小脑角池,甚至到达脑干)、T4(肿瘤挤压脑干或第四脑室)级肿瘤的有效听力保留率分别仅为70%、65%、56%、25%24。听觉脑干植入(auditory brainstem implant,ABI)是蜗神经断伤患者目前唯一可能的治疗方法,但ABI治疗主要应用于神经纤维瘤病2型(neurofibromatosis type 2,NF2)患者,且仅10%的患者多年后获得开放式言语识别能力25。干细胞的自我更新、多向分化及外分泌作用使之成为蜗神经损伤的潜在治疗方法。

HU等26通过在SD大鼠听泡入路耳蜗底部打孔,显露并横断蜗神经,然后将tau-GFP小鼠胚胎干细胞(embryonic stem cell,ESC)注入横断面中;GFP荧光和神经丝或β tubulin Ⅲ免疫染色证实移植的ESC存活了3~9周,且在该存活时间段,植入的ESC已经由横断处逐步迁移到靠近腹侧耳蜗核的脑干中,证明了细胞替代疗法在听神经损伤中的可行性。COLEMAN等27将未分化的ESC定时暴露于视黄酸,通过诱导使其形成类胚体,然后与从出生后5 d的大鼠分离的毛细胞外植体进行体外共培养;结果显示,具有与体外培养的哺乳动物听神经元相似形态的细胞显著增多,并表现为神经丝蛋白阳性的双极神经元样细胞;该研究为干细胞定向分化为听神经元系提供了有价值的分子线索。

SEKIYA等28研究者认为,内耳分隔内淋巴腔和外淋巴腔的膜的完整性对正常听力至关重要,于是开发了一种新的移植方法:神经表面移植,即在切开听神经干内听道段结缔组织囊后将干细胞置于蜗神经受压部分表面,以促进移植细胞和萎缩的听神经纤维之间的充分接触。对照组将干细胞移植入听神经干内,1个月后免疫荧光检查发现神经表面移植组的干细胞分布较对照组更广泛,不仅在整个听觉神经中发现了移植细胞,而且在听觉神经系统远端的罗氏管中也有发现;而在无损伤蜗神经表面进行移植,干细胞的迁徙距离十分有限。这为蜗神经损伤后的移植路径提供了新的参考。随后该团队进一步深入研究了干细胞移植对蜗神经损伤后的修复效果。他们将内耳祖细胞以损伤后表面移植及神经内注射的2种方式移植,进行了长达25周的观察和研究。听性脑干反应(auditory-evoked brainstem response,ABR)测试结果表明,表面移植组3个月后听力改善率58.8%,而神经内移植组改善率为0;免疫荧光检测表明,表面移植组干细胞在蜗管及脑干均有存活,而神经内移植组无干细胞存活。GFP标记的干细胞远端与谷氨酸受体2和谷氨酸受体3的复合物(glutamate receptor 2/glutamate receptor 3,GluR2/3)共定位,近端与脑干处突触蛋白共定位,分别证实了干细胞与毛细胞及脑干建立突触连接。研究29发现,在损伤引起的胶质瘢痕形成的管状结构中,移植细胞的主要迁徙方式是形成链状排列及附着在残余神经元上,进而证实胶质瘢痕在阻碍神经生长的同时,也有助于移植细胞的迁徙。这为蜗神经损伤的干细胞治疗提供了非常有价值的参考。

PALMGREN等30将tau-GFP小鼠ESC通过内听道移植到β-银环蛇毒素圆窗渗透致聋大鼠的蜗轴,并分别或同时应用脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)及软骨素酶ABC(chondroitinase ABC,ChABC)3周,在鼓阶、蜗轴、神经干和脑干中均发现了移植细胞。BDNF促进了细胞存活和神经元分化,而ChABC则使得大量细胞通过蜗神经的移行区迁移到中枢神经系统。这两者的应用为移植细胞的存活增殖和迁徙创造了良好的局部微环境。

CHEN等31对9~11周龄的胎儿耳蜗听觉干细胞(human fetal auditory stem cell,HFASC)进行鉴定和分离,并在体外长时间扩增,发现其能够保持分化为毛细胞和神经元的能力,且分化的细胞的功能和电生理特性与体内发育过程中的同类细胞非常相似。该研究为干细胞耳聋治疗的临床应用提供了依据。

蜗神经解剖位置深、长度短、研究难度大,干细胞移植存活率不高,听觉功能改善有限,这些均是目前研究的主要难题。如何提高移植细胞存活率,进一步实现听觉功能的修复是下一步的研究关键。

4 坐骨神经损伤的干细胞治疗

坐骨神经损伤是典型的外周神经损伤。因其由运动神经纤维和感觉神经纤维共同组成,神经受损后运动功能缺失的同时伴随有神经痛或者去神经感觉麻痹。自体神经移植目前仍然被认为是治疗神经缺损的最佳方法,但它自身固有的局限性,使得科学家开始研究用于神经缺损修复的新材料32-33。而以干细胞为基础,结合支架制造和材料选择,通过创造仿生环境以诱导神经再生的组织工程学治疗是主要的研究方向。

相较于视神经和蜗神经,坐骨神经位置表浅,操作方便,更易于尝试节段缺损后的修复。目前关于坐骨神经损伤修复的模型多为部分截取后通过神经导管连接,导管内置干细胞联合细胞外基质(extracellular matrix,ECM)修复34-36,而挤压伤的原位移植也较方便37-39。移植各类型来源干细胞及外泌体均有成功先例34-40。感觉神经修复效果的评估方法则各有不同。CARRIEL等34将ADSC和纤维蛋白-琼脂糖水凝胶植入神经导管,修复大鼠的坐骨神经10 mm的间隙,收缩试验提示感觉神经显著恢复。UEMURA等35使用小鼠诱导多能干细胞(induced pluripotent stem cell,iPSC)填充的神经导管修复小鼠坐骨神经5 mm缺损,缩足反射显示在所有观察点缩足时间短于对照组,证实感觉神经功能得到明显恢复。SALEHI等37将OE-MSC和海藻酸盐/壳聚糖水凝胶移植到Wistar大鼠的3 mm坐骨神经缺损中,热板试验提示OE-MSC水凝胶组潜伏期显著小于阴性对照组,说明感觉神经纤维得到恢复。MOZAFARI等38用添加成纤维细胞生长因子2(fibroblast growth factor 2,FGF2)的人类胚胎干细胞(human embryonic stem cell,hESC)修复小鼠5 mm的坐骨神经缺损,冯-弗雷测试(von Frey test)结果表明,hESC移植组最小刺激力显著低于其他组,提示感觉功能得到改善。ZHAO等39将BMSC中提取的外泌体注射到坐骨神经挤压伤大鼠的腓肠肌中,测量不同时间点坐骨神经热痛潜伏期(latency of thermal pain,LTP)及坐骨神经功能指数(sciatic nerve functional index,SFI),发现移植外泌体组的再生轴突的平均数量和直径、LTP和SFI均优于空白对照组,证实BMSC来源的外泌体可以促进坐骨神经感觉支及运动支的再生。ZHANG等40将神经干细胞(neural stem cell,NSC)和微囊化神经干细胞(microencapsulated neural stem cell,MC-NSC)移植到扎线损伤的坐骨神经中,发现移植后,机械回缩阈值(mechanical withdrawal threshold,MWT)和热回缩潜伏期(thermal withdrawal latency,TWL)升高,坐骨神经髓鞘相对完整;与NSC相比,MC-NSC移植能够显著提高坐骨神经的修复作用,缓解损伤引起的神经痛。该研究为干细胞移植方法的改良提供了有价值的参考。

干细胞修复坐骨神经感觉纤维的机制涉及促进再生神经组织中ECM的合成,转分化为施万细胞,形成髓鞘,分泌神经营养因子,促进轴突再生以及相关通路的激活/抑制,增强缺氧环境下干细胞的迁徙、增殖能力等(表1)。目前运动功能的恢复仍然是研究的关注点。未来随着移植技术逐渐成熟,感觉神经恢复将逐渐成为研究重点,以进一步改善感觉神经损伤修复后患者的生存质量。

表1   干细胞治疗在各类感觉神经损伤中的应用

Tab 1  Application of stem cell therapy in variety kinds of sensory nerve injury

ModelTypeRouteEffectMechanismReference
Clamp injury in Lister hooded ratsUC-MSCsVitreous injectionThe survival rate of RGC and the number of new axons and synapses were significantly increasedFactors that promote the survival or growth of target cells directly secreted or delivered through exocrine bodies[6]
Crushing injury in SD ratsDPSCs/BMSCsVitreous injectionBoth could promote the survival of RGC and the formation of neurite, with better effects on dental pulp stem cellsNeurotrophic effect of factors secreted by stem cells represented by NGF/BDNF/NT3[7]
Unilateral olfactory nerve transection in SD ratsADSCsCaudal vein injectionThe expression of OMP and the number of PCNA positive cells increased significantlySecretion of neurotrophin and differentiation into olfactory neurons and olfactory epithelial cells affect the regeneration of olfactory epithelium[18]
Olfactory epithelium injury induced by methimazole in miceBMSCs/G-CSFCaudal vein injection/hypodermic injectionThere was a significant difference in survival rate of bone marrow cells implanted with G-CSF at different timeG-CSF mobilizes BMSCs from bone marrow to circulation and protects nerves by inhibiting neuronal apoptosis[21]
Ten-mm defect of sciatic nerve in Wistar ratsADSCsNerve conduit transplantationElectrophysiological examination showed a significant recovery of sensory and motor function, and histological analysis showed that myelin reformation and axon growth were better than the control sideADSCs secrete neurotrophin, which can promote the synthesis and correct localization of ECM in regenerated nerve tissue, and increase the chemotactic attraction of growth cone[34]
Five-mm defect of left sciatic nerve in C57BL6 miceiPSCsNerve conduit transplantationThe recovery of sensory and motor function in the iPSC group was significantly better than the control group, and histology suggested that myelin sheath and axon regeneration were significantly enhancediPSCs-derived neurospheres differentiate into Schwann cells, form myelin sheath or release nerve growth factor to promote axonal growth[35]

Note: UC-MSC—umbilical cord mesenchymal stem cell; PCNA—proliferating cell nuclear antigen.

新窗口打开| 下载CSV


5 总结与展望

感觉神经损伤的修复关键在于:① 及时恢复神经结构的完整,形成突触连接,重新构建神经通路。② 实现神经功能的改善。在利用干细胞修复感觉神经损伤的各项研究中,所选用的干细胞种类包括ESC、MSC、OE-MSC等多种,并针对特定的神经尝试了不同的移植途径,如血管移植、神经表面移植等。对于位置表浅、解剖结构简单的神经,修复的操作相对简便,成功率更高。而对于位置深的视神经和蜗神经等,修复的技术比较复杂,对手术水平的要求较高。研究者们尝试了神经导管、纤维蛋白-琼脂糖水凝胶等材料作为干细胞移植的介质和支架,实现神经缺损部分的物理连接,并添加了BDNF、FGF2、ChABC等神经营养因子类物质,构建了细胞生长增殖与迁徙的环境。在这些研究中发现的神经修复机制主要包括:干细胞分泌神经生长因子、神经营养因子促进神经的再生;施万细胞在沃勒变性后残余的轴突基底膜管内分化、增殖,形成宾格尔带,引导再生轴突修复损伤。

虽然目前关于感觉神经修复的研究已经取得了一部分进展,但仍有许多相关问题待解决。即使部分研究中移植的干细胞在体内存活、增殖并分化,对神经结构进行了修复,但离实现感觉神经的实用功能仍有差距。用于修复神经的干细胞来源与种类的选择,是否进行定向分化后再移植,细胞移植的最佳时机,不同解剖位置神经的移植手术途径,移植时使用何种材料介质以及添加的营养因子条件等等,都还需要逐步研究来寻找答案。相信随着技术的进步及研究的深入,干细胞修复感觉神经损伤可克服上述问题,逐步应用于临床。

作者贡献声明

张云龙、华清泉参与了文章总体设计,张云龙、陈惠东、张志坚参与了论文的写作与修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The review was generally designed by ZHANG Yunlong and HUA Qingquan. The manuscript was drafted and revised by ZHANG Yunlong, CHEN Huidong, and ZHANG Zhijian. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者不存在利益冲突

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

GEISSLER J, STEVANOVIC M. Management of large peripheral nerve defects with autografting[J]. Injury, 2019, 50(Suppl 5): S64-S67.

[本文引用: 1]

JIN J. Stem cell treatments[J]. JAMA, 2017, 317(3): 330.

[本文引用: 1]

ZHANG Q Z, NGUYEN P D, SHI S H, et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats[J]. Mol Neurobiol, 2018, 55(8): 6965-6983.

[本文引用: 1]

REMINGTON L A. Visual system[M]//Clinical anatomy and physiology of the visual system. Amsterdam: Elsevier, 2012: 1-9.

[本文引用: 1]

ZHANG K Y, TUFFY C, MERTZ J L, et al. Role of the internal limiting membrane in structural engraftment and topographic spacing of transplanted human stem cell-derived retinal ganglion cells[J]. Stem Cell Reports, 2021, 16(1): 149-167.

[本文引用: 1]

DA SILVA-JUNIOR A J, MESENTIER-LOURO L A, NASCIMENTO-DOS-SANTOS G, et al. Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats[J]. Stem Cell Res Ther, 2021, 12(1): 69.

[本文引用: 4]

MEAD B, LOGAN A, BERRY M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556.

[本文引用: 3]

CHUNG S, RHO S, KIM G, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury[J]. Int J Mol Med, 2016, 37(5): 1170-1180.

[本文引用: 1]

MEAD B, TOMAREV S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285.

[本文引用: 1]

LIU F Y, LI G W, SUN C H, et al. Effects of bone marrow mesenchymal stem cells transfected with Ang-1 gene on hyperoxia-induced optic nerve injury in neonatal mice[J]. J Cell Physiol, 2018, 233(11): 8567-8577.

[本文引用: 1]

CEN L P, NG T K, LIANG J J, et al. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury[J]. Stem Cells, 2018, 36(6): 844-855.

PARK M, KIM H C, KIM O, et al. Human placenta mesenchymal stem cells promote axon survival following optic nerve compression through activation of NF-κB pathway[J]. J Tissue Eng Regen Med, 2018, 12(3): e1441-e1449.

[本文引用: 1]

WANG L J, LIU L P, GU X L, et al. Implantation of adipose-derived stem cells cures the optic nerve injury on rats through inhibiting the expression of inflammation factors in the TLR4 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1196-1202.

[本文引用: 1]

PARK M, KIM H M, SHIN H A, et al. Human pluripotent stem cell-derived neural progenitor cells promote retinal ganglion cell survival and axon recovery in an optic nerve compression animal model[J]. Int J Mol Sci, 2021, 22(22): 12529.

[本文引用: 3]

MESENTIER-LOURO L A, TEIXEIRA-PINHEIRO L C, GUBERT F, et al. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation[J]. Stem Cell Res Ther, 2019, 10(1): 121.

[本文引用: 1]

NORDIN S, BRÄMERSON A. Complaints of olfactory disorders: epidemiology, assessment and clinical implications[J]. Curr Opin Allergy Clin Immunol, 2008, 8(1): 10-15.

[本文引用: 1]

BERGMAN U, ÖSTERGREN A, GUSTAFSON A L, et al. Differential effects of olfactory toxicants on olfactory regeneration[J]. Arch Toxicol, 2002, 76(2): 104-112.

[本文引用: 1]

KIM Y M, CHOI Y S, CHOI J W, et al. Effects of systemic transplantation of adipose tissue-derived stem cells on olfactory epithelium regeneration[J]. Laryngoscope, 2009, 119(5): 993-999.

[本文引用: 4]

NODA Y, NISHIZAKI K, YOSHINOBU J, et al. The engraftment and differentiation of transplanted bone marrow-derived cells in the olfactory bulb after methimazole administration[J]. Acta Otolaryngol, 2013, 133(9): 951-956.

[本文引用: 2]

JO H, JUNG M, SEO D J, et al. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder[J]. Biochem Biophys Res Commun, 2015, 467(2): 395-399.

[本文引用: 2]

NISHIZAKI K, YOSHINOBU J, TSUJIGIWA H, et al. The early administration of granulocyte colony-stimulating factor increases the engraftment of transplanted bone marrow-derived cells into the olfactory epithelium damaged by methimazole[J]. Rhinology, 2010, 48(2): 228-232.

[本文引用: 2]

FRANCESCHINI V, BETTINI S, PIFFERI S, et al. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration[J]. Chem Senses, 2014, 39(7): 617-629.

LEE C H, JEON S W, SEO B S, et al. Transplantation of neural stem cells in anosmic mice[J]. Clin Exp Otorhinolaryngol, 2010, 3(2): 84-90.

[本文引用: 1]

SAMII M, MATTHIES C. Management of 1 000 vestibular schwannomas (acoustic neuromas): the facial nerve—preservation and restitution of function[J]. Neurosurgery, 1997, 40(4): 684-694; discussion 694-695.

[本文引用: 1]

NICHOLAS L, DEEP N L, ROLAND J T Jr. Auditory brainstem implantation[J]. Otolaryngol Clin N Am, 2020, 53(1): 103-113.

[本文引用: 1]

HU Z, ULFENDAHL M, OLIVIUS N P. Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve[J]. Brain Res, 2004, 1026(1): 68-73.

[本文引用: 1]

COLEMAN B, FALLON J B, PETTINGILL L N, et al. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons[J]. Exp Cell Res, 2007, 313(2): 232-243.

[本文引用: 1]

SEKIYA T, KOJIMA K, MATSUMOTO M, et al. Cell transplantation to the auditory nerve and cochlear duct[J]. Exp Neurol, 2006, 198(1): 12-24.

[本文引用: 1]

SEKIYA T, HOLLEY M C, HASHIDO K, et al. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration[J]. Proc Natl Acad Sci USA, 2015, 112(26): E3431-E3440.

[本文引用: 1]

PALMGREN B, JIAO Y, NOVOZHILOVA E, et al. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve[J]. Exp Neurol, 2012, 235(2): 599-609.

[本文引用: 1]

CHEN W, JOHNSON S L, MARCOTTI W, et al. Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells[J]. Stem Cells, 2009, 27(5): 1196-1204.

[本文引用: 1]

MANOUKIAN O S, BAKER J T, RUDRAIAH S, et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration[J]. J Control Release, 2020, 317: 78-95.

[本文引用: 1]

SU Y, ZHANG B L, SUN R W, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418.

[本文引用: 1]

CARRIEL V, GARRIDO-GÓMEZ J, HERNÁNDEZ-CORTÉS P, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration[J]. J Neural Eng, 2013, 10(2): 026022.

[本文引用: 4]

UEMURA T, IKEDA M, TAKAMATSU K, et al. Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice[J]. Cells Tissues Organs, 2014, 200(1): 78-91.

[本文引用: 2]

ZHANG Y, WANG W T, GONG C R, et al. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration[J]. Neural Regen Res, 2020, 15(10): 1903-1911.

[本文引用: 1]

SALEHI M, BAGHER Z, KAMRAVA S K, et al. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering[J]. J Cell Physiol, 2019, 234(9): 15357-15368.

[本文引用: 2]

MOZAFARI R, KYRYLENKO S, CASTRO M V, et al. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair[J]. J Venom Anim Toxins Incl Trop Dis, 2018, 24: 11.

[本文引用: 1]

ZHAO J H, DING Y L, HE R, et al. Dose-effect relationship and molecular mechanism by which BMSC-derived exosomes promote peripheral nerve regeneration after crush injury[J]. Stem Cell Res Ther, 2020, 11(1): 360.

[本文引用: 2]

ZHANG W J, LUO C, HUANG C, et al. Microencapsulated neural stem cells inhibit sciatic nerve injury-induced pain by reducing P2×4 receptor expression[J]. Front Cell Dev Biol, 2021, 9: 656780.

[本文引用: 2]

/