上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (11): 1450-1456.doi: 10.3969/j.issn.1674-8115.2023.11.014
• 综述 • 上一篇
收稿日期:
2023-04-06
接受日期:
2023-07-17
出版日期:
2023-11-28
发布日期:
2023-11-28
通讯作者:
华清泉
E-mail:2012302180163@whu.edu.cn;hqqrm@sina.com
作者简介:
陈惠东(1995—),女,住院医师,博士;电子信箱:2012302180163@whu.edu.cn。
基金资助:
CHEN Huidong(), ZHANG Yunlong, ZHANG Zhijian, HUA Qingquan()
Received:
2023-04-06
Accepted:
2023-07-17
Online:
2023-11-28
Published:
2023-11-28
Contact:
HUA Qingquan
E-mail:2012302180163@whu.edu.cn;hqqrm@sina.com
Supported by:
摘要:
感觉神经属于周围神经系统的传入神经部分。它们的作用是接受机体内外刺激,传入中枢,形成感觉或反射。外伤、肿瘤侵犯、手术损伤等原因,均可导致感觉神经受损。感觉神经损伤可能会使患者的某些感觉器官功能减退或丧失,如视神经、听神经等重要感觉神经在受损后会给患者生活质量带来严重影响。目前临床上修复感觉神经的方法主要是自体神经移植,但其应用受到各种因素限制,神经功能的恢复效果也常常有限。干细胞具有多向分化潜能,可以分化成施万细胞,继而分泌神经营养因子促进轴突生长和髓鞘再生,施万细胞定向增殖形成宾格尔带,引导神经再生。干细胞也可以分化为神经元,构筑神经缺损的修复材料,是神经修复的理想选择。目前,以干细胞为基础,结合若干关键性的生物技术,例如利用生物聚合或人工合成的表面微图案化的神经导管实现神经缺损的桥接、利用微球实现细胞外基质蛋白和神经营养因子控制性释放等,形成的组织工程学技术正被广泛研究,并取得了一定的成果。该文就干细胞在几种主要的感觉神经如视神经、嗅神经、蜗神经及坐骨神经的感觉神经纤维等损伤修复中的研究进展进行综述,期望为干细胞的神经修复提供新的视角,拓宽干细胞在神经修复中的临床前研究,为后续的临床应用提供参考。
中图分类号:
陈惠东, 张云龙, 张志坚, 华清泉. 干细胞修复感觉神经损伤的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(11): 1450-1456.
CHEN Huidong, ZHANG Yunlong, ZHANG Zhijian, HUA Qingquan. Advances in stem cell therapy for sensory nerve injury[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1450-1456.
Model | Type | Route | Effect | Mechanism | Reference |
---|---|---|---|---|---|
Clamp injury in Lister hooded rats | UC-MSCs | Vitreous injection | The survival rate of RGC and the number of new axons and synapses were significantly increased | Factors that promote the survival or growth of target cells directly secreted or delivered through exocrine bodies | [ |
Crushing injury in SD rats | DPSCs/BMSCs | Vitreous injection | Both could promote the survival of RGC and the formation of neurite, with better effects on dental pulp stem cells | Neurotrophic effect of factors secreted by stem cells represented by NGF/BDNF/NT3 | [ |
Unilateral olfactory nerve transection in SD rats | ADSCs | Caudal vein injection | The expression of OMP and the number of PCNA positive cells increased significantly | Secretion of neurotrophin and differentiation into olfactory neurons and olfactory epithelial cells affect the regeneration of olfactory epithelium | [ |
Olfactory epithelium injury induced by methimazole in mice | BMSCs/G-CSF | Caudal vein injection/hypodermic injection | There was a significant difference in survival rate of bone marrow cells implanted with G-CSF at different time | G-CSF mobilizes BMSCs from bone marrow to circulation and protects nerves by inhibiting neuronal apoptosis | [ |
Ten-mm defect of sciatic nerve in Wistar rats | ADSCs | Nerve conduit transplantation | Electrophysiological examination showed a significant recovery of sensory and motor function, and histological analysis showed that myelin reformation and axon growth were better than the control side | ADSCs secrete neurotrophin, which can promote the synthesis and correct localization of ECM in regenerated nerve tissue, and increase the chemotactic attraction of growth cone | [ |
Five-mm defect of left sciatic nerve in C57BL6 mice | iPSCs | Nerve conduit transplantation | The recovery of sensory and motor function in the iPSC group was significantly better than the control group, and histology suggested that myelin sheath and axon regeneration were significantly enhanced | iPSCs-derived neurospheres differentiate into Schwann cells, form myelin sheath or release nerve growth factor to promote axonal growth | [ |
表1 干细胞治疗在各类感觉神经损伤中的应用
Tab 1 Application of stem cell therapy in variety kinds of sensory nerve injury
Model | Type | Route | Effect | Mechanism | Reference |
---|---|---|---|---|---|
Clamp injury in Lister hooded rats | UC-MSCs | Vitreous injection | The survival rate of RGC and the number of new axons and synapses were significantly increased | Factors that promote the survival or growth of target cells directly secreted or delivered through exocrine bodies | [ |
Crushing injury in SD rats | DPSCs/BMSCs | Vitreous injection | Both could promote the survival of RGC and the formation of neurite, with better effects on dental pulp stem cells | Neurotrophic effect of factors secreted by stem cells represented by NGF/BDNF/NT3 | [ |
Unilateral olfactory nerve transection in SD rats | ADSCs | Caudal vein injection | The expression of OMP and the number of PCNA positive cells increased significantly | Secretion of neurotrophin and differentiation into olfactory neurons and olfactory epithelial cells affect the regeneration of olfactory epithelium | [ |
Olfactory epithelium injury induced by methimazole in mice | BMSCs/G-CSF | Caudal vein injection/hypodermic injection | There was a significant difference in survival rate of bone marrow cells implanted with G-CSF at different time | G-CSF mobilizes BMSCs from bone marrow to circulation and protects nerves by inhibiting neuronal apoptosis | [ |
Ten-mm defect of sciatic nerve in Wistar rats | ADSCs | Nerve conduit transplantation | Electrophysiological examination showed a significant recovery of sensory and motor function, and histological analysis showed that myelin reformation and axon growth were better than the control side | ADSCs secrete neurotrophin, which can promote the synthesis and correct localization of ECM in regenerated nerve tissue, and increase the chemotactic attraction of growth cone | [ |
Five-mm defect of left sciatic nerve in C57BL6 mice | iPSCs | Nerve conduit transplantation | The recovery of sensory and motor function in the iPSC group was significantly better than the control group, and histology suggested that myelin sheath and axon regeneration were significantly enhanced | iPSCs-derived neurospheres differentiate into Schwann cells, form myelin sheath or release nerve growth factor to promote axonal growth | [ |
1 | GEISSLER J, STEVANOVIC M. Management of large peripheral nerve defects with autografting[J]. Injury, 2019, 50(Suppl 5): S64-S67. |
2 | JIN J. Stem cell treatments[J]. JAMA, 2017, 317(3): 330. |
3 | ZHANG Q Z, NGUYEN P D, SHI S H, et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats[J]. Mol Neurobiol, 2018, 55(8): 6965-6983. |
4 | REMINGTON L A. Visual system[M]//Clinical anatomy and physiology of the visual system. Amsterdam: Elsevier, 2012: 1-9. |
5 | ZHANG K Y, TUFFY C, MERTZ J L, et al. Role of the internal limiting membrane in structural engraftment and topographic spacing of transplanted human stem cell-derived retinal ganglion cells[J]. Stem Cell Reports, 2021, 16(1): 149-167. |
6 | DA SILVA-JUNIOR A J, MESENTIER-LOURO L A, NASCIMENTO-DOS-SANTOS G, et al. Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats[J]. Stem Cell Res Ther, 2021, 12(1): 69. |
7 | MEAD B, LOGAN A, BERRY M, et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7544-7556. |
8 | CHUNG S, RHO S, KIM G, et al. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury[J]. Int J Mol Med, 2016, 37(5): 1170-1180. |
9 | MEAD B, TOMAREV S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285. |
10 | LIU F Y, LI G W, SUN C H, et al. Effects of bone marrow mesenchymal stem cells transfected with Ang-1 gene on hyperoxia-induced optic nerve injury in neonatal mice[J]. J Cell Physiol, 2018, 233(11): 8567-8577. |
11 | CEN L P, NG T K, LIANG J J, et al. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury[J]. Stem Cells, 2018, 36(6): 844-855. |
12 | PARK M, KIM H C, KIM O, et al. Human placenta mesenchymal stem cells promote axon survival following optic nerve compression through activation of NF-κB pathway[J]. J Tissue Eng Regen Med, 2018, 12(3): e1441-e1449. |
13 | WANG L J, LIU L P, GU X L, et al. Implantation of adipose-derived stem cells cures the optic nerve injury on rats through inhibiting the expression of inflammation factors in the TLR4 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1196-1202. |
14 | PARK M, KIM H M, SHIN H A, et al. Human pluripotent stem cell-derived neural progenitor cells promote retinal ganglion cell survival and axon recovery in an optic nerve compression animal model[J]. Int J Mol Sci, 2021, 22(22): 12529. |
15 | MESENTIER-LOURO L A, TEIXEIRA-PINHEIRO L C, GUBERT F, et al. Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation[J]. Stem Cell Res Ther, 2019, 10(1): 121. |
16 | NORDIN S, BRÄMERSON A. Complaints of olfactory disorders: epidemiology, assessment and clinical implications[J]. Curr Opin Allergy Clin Immunol, 2008, 8(1): 10-15. |
17 | BERGMAN U, ÖSTERGREN A, GUSTAFSON A L, et al. Differential effects of olfactory toxicants on olfactory regeneration[J]. Arch Toxicol, 2002, 76(2): 104-112. |
18 | KIM Y M, CHOI Y S, CHOI J W, et al. Effects of systemic transplantation of adipose tissue-derived stem cells on olfactory epithelium regeneration[J]. Laryngoscope, 2009, 119(5): 993-999. |
19 | NODA Y, NISHIZAKI K, YOSHINOBU J, et al. The engraftment and differentiation of transplanted bone marrow-derived cells in the olfactory bulb after methimazole administration[J]. Acta Otolaryngol, 2013, 133(9): 951-956. |
20 | JO H, JUNG M, SEO D J, et al. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder[J]. Biochem Biophys Res Commun, 2015, 467(2): 395-399. |
21 | NISHIZAKI K, YOSHINOBU J, TSUJIGIWA H, et al. The early administration of granulocyte colony-stimulating factor increases the engraftment of transplanted bone marrow-derived cells into the olfactory epithelium damaged by methimazole[J]. Rhinology, 2010, 48(2): 228-232. |
22 | FRANCESCHINI V, BETTINI S, PIFFERI S, et al. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration[J]. Chem Senses, 2014, 39(7): 617-629. |
23 | LEE C H, JEON S W, SEO B S, et al. Transplantation of neural stem cells in anosmic mice[J]. Clin Exp Otorhinolaryngol, 2010, 3(2): 84-90. |
24 | SAMII M, MATTHIES C. Management of 1 000 vestibular schwannomas (acoustic neuromas): the facial nerve—preservation and restitution of function[J]. Neurosurgery, 1997, 40(4): 684-694; discussion 694-695. |
25 | NICHOLAS L, DEEP N L, ROLAND J T Jr. Auditory brainstem implantation[J]. Otolaryngol Clin N Am, 2020, 53(1): 103-113. |
26 | HU Z, ULFENDAHL M, OLIVIUS N P. Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve[J]. Brain Res, 2004, 1026(1): 68-73. |
27 | COLEMAN B, FALLON J B, PETTINGILL L N, et al. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons[J]. Exp Cell Res, 2007, 313(2): 232-243. |
28 | SEKIYA T, KOJIMA K, MATSUMOTO M, et al. Cell transplantation to the auditory nerve and cochlear duct[J]. Exp Neurol, 2006, 198(1): 12-24. |
29 | SEKIYA T, HOLLEY M C, HASHIDO K, et al. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration[J]. Proc Natl Acad Sci USA, 2015, 112(26): E3431-E3440. |
30 | PALMGREN B, JIAO Y, NOVOZHILOVA E, et al. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve[J]. Exp Neurol, 2012, 235(2): 599-609. |
31 | CHEN W, JOHNSON S L, MARCOTTI W, et al. Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells[J]. Stem Cells, 2009, 27(5): 1196-1204. |
32 | MANOUKIAN O S, BAKER J T, RUDRAIAH S, et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration[J]. J Control Release, 2020, 317: 78-95. |
33 | SU Y, ZHANG B L, SUN R W, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418. |
34 | CARRIEL V, GARRIDO-GÓMEZ J, HERNÁNDEZ-CORTÉS P, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration[J]. J Neural Eng, 2013, 10(2): 026022. |
35 | UEMURA T, IKEDA M, TAKAMATSU K, et al. Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice[J]. Cells Tissues Organs, 2014, 200(1): 78-91. |
36 | ZHANG Y, WANG W T, GONG C R, et al. Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration[J]. Neural Regen Res, 2020, 15(10): 1903-1911. |
37 | SALEHI M, BAGHER Z, KAMRAVA S K, et al. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering[J]. J Cell Physiol, 2019, 234(9): 15357-15368. |
38 | MOZAFARI R, KYRYLENKO S, CASTRO M V, et al. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair[J]. J Venom Anim Toxins Incl Trop Dis, 2018, 24: 11. |
39 | ZHAO J H, DING Y L, HE R, et al. Dose-effect relationship and molecular mechanism by which BMSC-derived exosomes promote peripheral nerve regeneration after crush injury[J]. Stem Cell Res Ther, 2020, 11(1): 360. |
40 | ZHANG W J, LUO C, HUANG C, et al. Microencapsulated neural stem cells inhibit sciatic nerve injury-induced pain by reducing P2×4 receptor expression[J]. Front Cell Dev Biol, 2021, 9: 656780. |
[1] | 高昕, 杨屹羚, 黄湘如, 代庆刚, 江凌勇. 利用CRISPR/Cas9靶向敲除Piezo1基因对小鼠间充质干细胞成骨分化的影响研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1080-1088. |
[2] | 宣臻全, 陈轩祎, 姚志荣. 神经免疫紊乱在特应性皮炎中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1049-1055. |
[3] | 李旭冉, 陶诗聪, 郭尚春. 骨髓间充质干细胞来源小细胞外囊泡对骨质疏松症的改善作用[J]. 上海交通大学学报(医学版), 2023, 43(4): 406-416. |
[4] | 王靖怡, 王琼. 基于CRISPR/Cas9n技术建立携带mT-F2A-EGFP报告系统的小鼠胚胎干细胞系[J]. 上海交通大学学报(医学版), 2023, 43(4): 417-427. |
[5] | 过丽强, 赵世天, 舒冰. Notch信号通路在骨折愈合过程中作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 222-229. |
[6] | 赵洁, 姜言, 郝思国. 弥漫大B细胞淋巴瘤患者临床特征及预后分析[J]. 上海交通大学学报(医学版), 2023, 43(10): 1282-1288. |
[7] | 崔锡炜, 钟民衎, 热汗姑丽·艾买尔, 王智超, 李青峰. 人多效蛋白抑制恶性周围神经鞘瘤转移的机制研究[J]. 上海交通大学学报(医学版), 2022, 42(9): 1225-1238. |
[8] | 周月, 程晨, 郑恩霖, 孟卓, 王鉴, 王青洁, 何勇宁, 孙锟. 利用Crispr/Cas9基因编辑系统在人胚胎干细胞中探索ELABELA的潜在新受体[J]. 上海交通大学学报(医学版), 2022, 42(9): 1258-1264. |
[9] | 李悦华, 李青峰, 谢芸. 脂肪来源间充质干细胞在自身免疫性疾病中的应用进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1131-1138. |
[10] | 刘宏强, 陆艳青, 高宇轩, 王一云, 王传东, 张晓玲. 构建高效载体OPEI沉默TRAF6促进骨关节炎软骨再生的研究[J]. 上海交通大学学报(医学版), 2022, 42(7): 846-857. |
[11] | 刘鹏涛, 张志远, 柏凯平, 邢晓宇, 邹翔宇, 孙杰. 儿童异基因造血干细胞移植后出血性膀胱炎早期症状与外科治疗的分析[J]. 上海交通大学学报(医学版), 2022, 42(7): 958-963. |
[12] | 王昕芃, 王君颖, 蔡佳翌, 付婉彬, 钟华. 低剂量地西他滨对免疫性血小板减少症患者来源的骨髓间充质干细胞生物学行为的影响[J]. 上海交通大学学报(医学版), 2022, 42(6): 758-767. |
[13] | 郑诗凡, 马皎. 肿瘤干细胞代谢在肿瘤发展中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 825-832. |
[14] | 赵冰楠, 马双羽, 胥春龙, 王琼. SMAD2和SMAD3在人胚胎干细胞分化过程中的不同调控作用[J]. 上海交通大学学报(医学版), 2022, 42(4): 443-454. |
[15] | 郝磊, 金戈, 杨涌涛, 王军伟, 孙洋, 秦翠玲, 展群岭. 骨髓间充质干细胞外泌体介导miR-124-1对小胶质细胞M2型极化调控的影响[J]. 上海交通大学学报(医学版), 2022, 42(3): 323-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||