上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (8): 1049-1055.doi: 10.3969/j.issn.1674-8115.2023.08.014
• 综述 • 上一篇
收稿日期:
2023-03-29
接受日期:
2023-06-29
出版日期:
2023-08-28
发布日期:
2023-08-28
通讯作者:
姚志荣
E-mail:397703545@sjtu.edu.cn;yaozhirong@xinhuamed.com.cn
作者简介:
宣臻全(1998—),男,硕士生;电子信箱:397703545@sjtu.edu.cn。
基金资助:
XUAN Zhenquan(), CHEN Xuanyi, YAO Zhirong()
Received:
2023-03-29
Accepted:
2023-06-29
Online:
2023-08-28
Published:
2023-08-28
Contact:
YAO Zhirong
E-mail:397703545@sjtu.edu.cn;yaozhirong@xinhuamed.com.cn
Supported by:
摘要:
特应性皮炎(atopic dermatitis,AD)是全球发病率最高的慢性炎症性皮肤病,临床主要表现为湿疹样皮肤病变、瘙痒和干皮症。近来有研究发现,AD患者的皮损中的感觉神经元可同时与角质形成细胞(keratinocyte,KC)、免疫细胞异常互作,导致神经免疫紊乱的发生。其中,参与神经免疫紊乱的感觉神经元有2类,包括组胺能感觉神经元和非组胺能感觉神经元。在神经免疫紊乱中,KC和免疫细胞可通过分泌白细胞介素-4(interleukin-4,IL-4)、IL-13、IL-31、IL-33、胸腺基质淋巴细胞生成素等促炎细胞因子以及C-X-C模体趋化因子配体12(C-X-C motif chemokine ligand 12,CXCL12)、CXCL10等趋化因子激活感觉神经元以诱发瘙痒,还可分泌神经生长因子、脑源性神经营养因子和神经鞘胚素等神经肽诱导感觉神经元过度生长,以促进神经免疫互作。同时,感觉神经元过度释放的降钙素基因相关肽和P物质等神经肽可作用于KC和免疫细胞,从而加剧皮肤炎症。近年来,诸多靶向神经免疫紊乱的药物处于临床前研究、临床试验等阶段,或已上市用于AD治疗,其中该课题组发现局麻药物利多卡因可靶向神经免疫紊乱并能够在临床上缓解AD患者的瘙痒及皮肤炎症。目前,神经免疫紊乱在AD中的作用鲜少被系统性讨论。基于此,该文围绕参与神经免疫紊乱的感觉神经元种类,KC、免疫细胞及感觉神经元在神经免疫紊乱中的作用,以及靶向神经免疫紊乱的治疗策略进行综述。
中图分类号:
宣臻全, 陈轩祎, 姚志荣. 神经免疫紊乱在特应性皮炎中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1049-1055.
XUAN Zhenquan, CHEN Xuanyi, YAO Zhirong. Research progress in neuroimmune disorders in atopic dermatitis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1049-1055.
1 | GUO Y F, LI P, TANG J P, et al. Prevalence of atopic dermatitis in Chinese children aged 1-7 ys[J]. Sci Rep, 2016, 6: 29751. |
2 | LAUGHTER M R, MAYMONE M C, MASHAYEKHI S, et al. The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990‒2017[J]. Br J Dermatol, 2021, 184(2): 304-309. |
3 | FRAZIER W, BHARDWAJ N. Atopic dermatitis: diagnosis and treatment[J]. Am Fam Physician, 2020, 101(10): 590-598. |
4 | LANGAN S M, IRVINE A D, WEIDINGER S. Atopic dermatitis[J]. Lancet, 2020, 396(10247): 345-360. |
5 | TÜZÜN Y, ANTONOV M, DOLAR N, et al. Keratinocyte cytokine and chemokine receptors[J]. Dermatol Clin, 2007, 25(4): 467-476, vii. |
6 | KLEIN WOLTERINK R G J, WU G S, CHIU I M, et al. Neuroimmune interactions in peripheral organs[J]. Annu Rev Neurosci, 2022, 45: 339-360. |
7 | STEINHOFF M, AHMAD F, PANDEY A, et al. Neuroimmune communication regulating pruritus in atopic dermatitis[J]. J Allergy Clin Immunol, 2022, 149(6): 1875-1898. |
8 | CHURCH M K. Allergy, histamine and antihistamines[J]. Handb Exp Pharmacol, 2017, 241: 321-331. |
9 | BAUTISTA D M, WILSON S R, HOON M A. Why we scratch an itch: the molecules, cells and circuits of itch[J]. Nat Neurosci, 2014, 17(2): 175-182. |
10 | SCHAPER-GERHARDT K, ROSSBACH K, NIKOLOULI E, et al. The role of the histamine H4 receptor in atopic dermatitis and psoriasis[J]. Br J Pharmacol, 2020, 177(3): 490-502. |
11 | MURATA Y, SONG M, KIKUCHI H, et al. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4 R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis[J]. J Dermatol, 2015, 42(2): 129-139. |
12 | YOSIPOVITCH G, ROSEN J D, HASHIMOTO T. Itch: from mechanism to (novel) therapeutic approaches[J]. J Allergy Clin Immunol, 2018, 142(5): 1375-1390. |
13 | CHAN L S, ROBINSON N, XU L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis[J]. J Invest Dermatol, 2001, 117(4): 977-983. |
14 | ZHENG T, OH M H, OH S Y, et al. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling[J]. J Invest Dermatol, 2009, 129(3): 742-751. |
15 | OETJEN L K, MACK M R, FENG J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch[J]. Cell, 2017, 171(1): 217-228. e13. |
16 | SINGER E M, SHIN D B, NATTKEMPER L A, et al. IL-31 is produced by the malignant T-cell population in cutaneous T-Cell lymphoma and correlates with CTCL pruritus[J]. J Invest Dermatol, 2013, 133(12): 2783-2785. |
17 | SONKOLY E, MULLER A, LAUERMA A I, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation[J]. J Allergy Clin Immunol, 2006, 117(2): 411-417. |
18 | TEY H L, CAO T, NATTKEMPER L A, et al. Pathophysiology of pruritus in primary localized cutaneous amyloidosis[J]. Br J Dermatol, 2016, 174(6): 1345-1350. |
19 | CEVIKBAS F, WANG X, AKIYAMA T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1[J]. J Allergy Clin Immunol, 2014, 133(2): 448-460. |
20 | BECK L A, CORK M J, AMAGAI M, et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis[J]. JID Innov, 2022, 2(5): 100131. |
21 | SOUMELIS V, RECHE P A, KANZLER H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP[J]. Nat Immunol, 2002, 3(7): 673-680. |
22 | WILSON S R, THÉ L, BATIA L M, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch[J]. Cell, 2013, 155(2): 285-295. |
23 | LEE W J, SHIM W S. Cutaneous neuroimmune interactions of TSLP and TRPV4 play pivotal roles in dry skin-induced pruritus[J]. Front Immunol, 2021, 12: 772941. |
24 | OYOSHI M K, LARSON R P, ZIEGLER S F, et al. Mechanical injury polarizes skin dendritic cells to elicit a TH2 response by inducing cutaneous thymic stromal lymphopoietin expression[J]. J Allergy Clin Immunol, 2010, 126(5): 976-984, 984. e1-5. |
25 | CHAN B C L, LAM C W K, TAM L S, et al. IL33: roles in allergic inflammation and therapeutic perspectives[J]. Front Immunol, 2019, 10: 364. |
26 | HUANG J T, GANDINI M A, CHEN L N, et al. Hyperactivity of innate immunity triggers pain via TLR2-IL-33-mediated neuroimmune crosstalk[J]. Cell Rep, 2020, 33(1): 108233. |
27 | LIU B Y, TAI Y, ACHANTA S, et al. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy[J]. Proc Natl Acad Sci USA, 2016, 113(47): E7572-E7579. |
28 | TRIER A M, MACK M R, FREDMAN A, et al. IL-33 signaling in sensory neurons promotes dry skin itch[J]. J Allergy Clin Immunol, 2022, 149(4): 1473-1480. e6. |
29 | NAKAMURA N, TAMAGAWA-MINEOKA R, YASUIKE R, et al. Stratum corneum interleukin-33 expressions correlate with the degree of lichenification and pruritus in atopic dermatitis lesions[J]. Clin Immunol, 2019, 201: 1-3. |
30 | ROGGENKAMP D, FALKNER S, STÄB F, et al. Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells[J]. J Invest Dermatol, 2012, 132(7): 1892-1900. |
31 | SOLINSKI H J, RUKWIED R, SCHMELZ M. Microinjection of pruritogens in NGF-sensitized human skin[J]. Sci Rep, 2021, 11(1): 21490. |
32 | TAKANO N, SAKURAI T, OHASHI Y, et al. Effects of high-affinity nerve growth factor receptor inhibitors on symptoms in the NC/Nga mouse atopic dermatitis model[J]. Br J Dermatol, 2007, 156(2): 241-246. |
33 | KOWIAŃSKI P, LIETZAU G, CZUBA E, et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity[J]. Cell Mol Neurobiol, 2018, 38(3): 579-593. |
34 | FÖLSTER-HOLST R, PAPAKONSTANTINOU E, RÜDRICH U, et al. Childhood atopic dermatitis-brain-derived neurotrophic factor correlates with serum eosinophil cationic protein and disease severity[J]. Allergy, 2016, 71(7): 1062-1065. |
35 | GUSEVA D, RÜDRICH U, KOTNIK N, et al. Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis[J]. Clin Exp Allergy, 2020, 50(5): 577-584. |
36 | MUROTA H, IZUMI M, ABD EL-LATIF M I, et al. Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis[J]. J Allergy Clin Immunol, 2012, 130(3): 671-682. e4. |
37 | HIDAKA T, OGAWA E, KOBAYASHI E H, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin[J]. Nat Immunol, 2017, 18(1): 64-73. |
38 | JÄRVIKALLIO A, HARVIMA I T, NAUKKARINEN A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema[J]. Arch Dermatol Res, 2003, 295(1): 2-7. |
39 | SALOMON J, BARAN E. The role of selected neuropeptides in pathogenesis of atopic dermatitis[J]. J Eur Acad Dermatol Venereol, 2008, 22(2): 223-228. |
40 | KUBANOV A A, KATUNINA O R, CHIKIN V V. Expression of neuropeptides, neurotrophins, and neurotransmitters in the skin of patients with atopic dermatitis and psoriasis[J]. Bull Exp Biol Med, 2015, 159(3): 318-322. |
41 | HAN S B, KIM H, CHO S H, et al. Protective effect of botulinum toxin type A against atopic dermatitis-like skin lesions in NC/Nga mice[J]. Dermatol Surg, 2017, 43(Suppl 3): S312-S321. |
42 | YIN Q Q, SUN L B, CAI X J, et al. Lidocaine ameliorates psoriasis by obstructing pathogenic CGRP signaling-mediated sensory neuron-dendritic cell communication[J]. J Invest Dermatol, 2022, 142(8): 2173-2183. e6. |
43 | ROGGENKAMP D, KÖPNICK S, STÄB F, et al. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model[J]. J Invest Dermatol, 2013, 133(6): 1620-1628. |
44 | SHI X, WANG L, CLARK J D, et al. Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways[J]. Regul Pept, 2013, 186: 92-103. |
45 | ANTÚNEZ C, TORRES M J, LÓPEZ S, et al. Calcitonin gene-related peptide modulates interleukin-13 in circulating cutaneous lymphocyte-associated antigen-positive T cells in patients with atopic dermatitis[J]. Br J Dermatol, 2009, 161(3): 547-553. |
46 | SUN P Y, LI H G, XU Q Y, et al. Lidocaine alleviates inflammation and pruritus in atopic dermatitis by blocking different population of sensory neurons[J]. Br J Pharmacol, 2023, 180(10): 1339-1361. |
47 | LIU J Y, HU J H, ZHU Q G, et al. Effect of matrine on the expression of substance P receptor and inflammatory cytokines production in human skin keratinocytes and fibroblasts[J]. Int Immunopharmacol, 2007, 7(6): 816-823. |
48 | RAAP M, RÜDRICH U, STÄNDER S, et al. Substance P activates human eosinophils[J]. Exp Dermatol, 2015, 24(7): 557-559. |
49 | FRIEDMAN S, LEVI-SCHAFFER F. Substance P and eosinophils: an itchy connection[J]. Exp Dermatol, 2015, 24(12): 918-919. |
50 | PAVLOVIC S, DANILTCHENKO M, TOBIN D J, et al. Further exploring the brain-skin connection: stress worsens dermatitis via substance P-dependent neurogenic inflammation in mice[J]. J Invest Dermatol, 2008, 128(2): 434-446. |
51 | SERHAN N, BASSO L, SIBILANO R, et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation[J]. Nat Immunol, 2019, 20(11): 1435-1443. |
52 | WHEELER J J, LASCELLES B D, OLIVRY T, et al. Itch-associated neuropeptides and their receptor expression in dog dorsal root ganglia and spinal cord[J]. Acta Derm Venereol, 2019, 99(12): 1131-1135. |
53 | MENG J, MORIYAMA M, FELD M, et al. New mechanism underlying IL-31-induced atopic dermatitis[J]. J Allergy Clin Immunol, 2018, 141(5): 1677-1689. e8. |
54 | GOODERHAM M J, HONG H C, ESHTIAGHI P, et al. Dupilumab: a review of its use in the treatment of atopic dermatitis[J]. J Am Acad Dermatol, 2018, 78(3 Suppl 1): S28-S36. |
55 | NEZAMOLOLAMA N, FIELDHOUSE K, METZGER K, et al. Emerging systemic JAK inhibitors in the treatment of atopic dermatitis: a review of abrocitinib, baricitinib, and upadacitinib[J]. Drugs Context, 2020, 9: 2020-8-5. |
56 | WOLLENBERG A, WEIDINGER S, WORM M, et al. Tralokinumab in atopic dermatitis[J]. J Dtsch Dermatol Ges, 2021, 19(10): 1435-1442. |
57 | RUZICKA T, HANIFIN J M, FURUE M, et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis[J]. N Engl J Med, 2017, 376(9): 826-835. |
58 | KABASHIMA K, MATSUMURA T, KOMAZAKI H, et al. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: results from two phase Ⅲ, long-term studies[J]. Br J Dermatol, 2022, 186(4): 642-651. |
59 | SILVERBERG J I, PINTER A, PULKA G, et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus[J]. J Allergy Clin Immunol, 2020, 145(1): 173-182. |
60 | WELSH S E, XIAO C, KADEN A R, et al. Neurokinin-1 receptor antagonist tradipitant has mixed effects on itch in atopic dermatitis: results from EPIONE, a randomized clinical trial[J]. J Eur Acad Dermatol Venereol, 2021, 35(5): e338-e340. |
61 | LEE Y W, WON C H, JUNG K, et al. Efficacy and safety of PAC-14028 cream - a novel, topical, nonsteroidal, selective TRPV1 antagonist in patients with mild-to-moderate atopic dermatitis: a phase Ⅱb randomized trial[J]. Br J Dermatol, 2019, 180(5): 1030-1038. |
62 | RATCHATASWAN T, BANZON T M, THYSSEN J P, et al. Biologics for treatment of atopic dermatitis: current status and future prospect[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1053-1065. |
63 | PENG G, MU Z Z, CUI L X, et al. Anti-IL-33 antibody has a therapeutic effect in an atopic dermatitis murine model induced by 2, 4-dinitrochlorobenzene[J]. Inflammation, 2018, 41(1): 154-163. |
64 | ZENG D, CHEN C, ZHOU W, et al. TRPA1 deficiency alleviates inflammation of atopic dermatitis by reducing macrophage infiltration[J]. Life Sci, 2021, 266: 118906. |
65 | LI H, LI C, ZHANG H, et al. Effects of lidocaine on regulatory T cells in atopic dermatitis[J]. J Allergy Clin Immunol, 2016, 137(2): 613-617. e5. |
66 | JIAO Q Q, WANG H L, HU Z L, et al. Lidocaine inhibits staphylococcal enterotoxin-stimulated activation of peripheral blood mononuclear cells from patients with atopic dermatitis[J]. Arch Dermatol Res, 2013, 305(7): 629-636. |
67 | DRUCKER A M, WANG A R, LI W Q, et al. The burden of atopic dermatitis: summary of a report for the National Eczema Association[J]. J Invest Dermatol, 2017, 137(1): 26-30. |
[1] | 王青, 韩晓, 张晓波. 表观遗传修饰调控肺炎免疫应答的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(7): 931-938. |
[2] | 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130. |
[3] | 程颖, 李梅云, 陈戟. 特应性皮炎患儿血清维生素D水平与血清过敏原的相关性[J]. 上海交通大学学报(医学版), 2022, 42(11): 1569-1575. |
[4] | 娜迪拉·努尔夏提, 李敏, 刘倩. 特应性皮炎与葡萄球菌属细菌定植相关性的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(11): 1605-1611. |
[5] | 庄昊俊, 郭美亮, 刘婉雯, 邓辉. Janus激酶抑制剂在特应性皮炎治疗中的临床应用研究进展[J]. 上海交通大学学报(医学版), 2021, 41(7): 963-966. |
[6] | 高 涵,张 萍. 子宫内膜异位症的免疫学相关研究进展[J]. 上海交通大学学报(医学版), 2020, 40(11): 1544-1549. |
[7] | 周 晗,杨晓笙,廖陈龙,张文川. 糖尿病足溃疡相关基因与免疫细胞特征分析[J]. 上海交通大学学报(医学版), 2020, 40(10): 1354-1359. |
[8] | 张闻,傅秀军,姚敏. 640 nm红光通过 CD26促进角质形成细胞迁移的实验研究[J]. 上海交通大学学报(医学版), 2019, 39(8): 843-. |
[9] | 王丹丹,张晨. 精神分裂症患者认知功能的神经免疫机制及非典型抗精神病 药物对其影响的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(7): 795-. |
[10] | 黄欣欣 1,丁婕 2,韩露 2,于鹭 1,朱德生 2,管阳太 1, 2. 视神经脊髓炎谱系疾病患者血脑屏障通透性与肢体伤残的相关性分析[J]. 上海交通大学学报(医学版), 2018, 38(5): 520-. |
[11] | 王敏,周招华,邓仕标,张洁妤,余婷,朱德生,何云岩 . 吉兰 - 巴雷综合征患者脑脊液蛋白水平与周围神经髓鞘损伤的 相关性分析[J]. 上海交通大学学报(医学版), 2017, 37(10): 1372-. |
[12] | 傅秀军, 石有振, 方 勇, 等. 机械损伤对人皮肤角质形成细胞氧化应激和前列腺素E2分泌的影响[J]. , 2011, 31(7): 905-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||