上海交通大学学报(医学版), 2023, 43(6): 747-754 doi: 10.3969/j.issn.1674-8115.2023.06.011

论著 · 临床研究

基于生物学分析构建及验证棕榈酰化相关酶长链非编码RNA的肝癌预后风险模型

于莉,, 苏显都, 张敏, 李雅慧, 王乐

海南省儋州市人民医院检验科,儋州 571700

Construction and validation of prognostic risk model for hepatocellular carcinoma based on biological analysis of palmitoyl-associated enzyme long-chain non-coding RNA

YU Li,, SU Xiandu, ZHANG Min, LI Yahui, WANG Le

Clinical Laboratory, Danzhou People's Hospital, Hainan Province, Danzhou 571700, China

通讯作者: 同上。

编委: 张慧俊

收稿日期: 2023-01-13   接受日期: 2023-04-03   网络出版日期: 2023-06-28

Corresponding authors: YU Li, E-mail:hhelong1123@163.com.

Received: 2023-01-13   Accepted: 2023-04-03   Online: 2023-06-28

作者简介 About authors

于 莉(1975—),女,副主任技师,学士;电子信箱:hhelong1123@163.com。 E-mail:hhelong1123@163.com

摘要

目的·基于癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库筛选棕榈酰化相关长链非编码RNA(long non-coding RNA,lncRNA),构建肝癌预后风险模型。方法·从TCGA数据库中下载获取374例肝癌组织及50例正常组织样本的测序数据和对应的患者临床及预后资料,对肝癌组织与正常组织的差异锌指DHHC结构域(zinc finger aspartate-histidine-histidine-cysteine domain,ZDHHC)蛋白家族构建相关的lncRNA表达谱,并采用单因素回归分析筛选预后相关lncRNA,进一步通过最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归算法构建预测模型;对模型预测的有效性进行验证,并分析模型高、低风险组与免疫功能的关系以及预测免疫治疗应答效果。结果·发现20个肝癌差异表达的ZDHHC,其中有656个lncRNA和差异ZDHHC有相关性(均P<0.05)。单因素COX分析筛选出22个lncRNA与肝癌的预后相关(HR为1.47~13.05,均P<0.05),LASSO回归分析纳入3个lncRNA构建风险模型,即风险模型分数=0.662 6×AC026356.1+0.213 9×AC026401.3+0.405 6×POLH-AS1,模型中高风险组患者的总生存期(overall survival,OS)和无进展生存期(progression-free survival,PFS)明显低于低风险组患者(均P<0.05)。多因素COX回归分析显示,该模型作为风险因素是影响生存期的独立因素(HR=1.375,95%CI为1.208~1.566)。风险模型中高风险和低风险的免疫功能通路有明显差异,且高风险患者对免疫治疗的应答水平更低(P<0.05)。结论·使用基于棕榈酰化相关lncRNA表达的风险模型能够独立预测肝癌患者的生存期,为患者接受免疫治疗提供参考。

关键词: 肝细胞癌 ; 长链非编码RNA ; 棕榈酰化 ; 风险模型 ; 免疫治疗

Abstract

Objective ·To explore the effect of screening the expression of long non-coding RNA (lncRNA) related to palmitoylation on prognosis of liver cancer based on The Cancer Genome Atlas (TCGA) database and construct a risk prediction model in liver cancer. Methods ·The sequencing data and the corresponding clinical information of 374 liver cancer tissues and 50 normal tissue samples were downloaded from TCGA database. The differential zinc finger aspartate-histidine-histidine-cysteine domain (ZDHHC) between liver cancer tissues and normal tissues was used to construct the expression profile of lncRNA related to ZDHHC. Furthermore, the prediction model was constructed by LASSO regression algorithm and the validity of the model prediction was verified to analyze the relationship between high-risk and low-risk groups and immune function and to predict the response to immunotherapy. Results ·There were 20 differentially expressed ZDHHCs in hepatocellular carcinoma, among which 656 lncRNAs were correlated with differential ZDHHCs (all P<0.05). Univariate COX analysis showed that 22 lncRNAs were associated with the prognosis of hepatocellular carcinoma (HR 1.47‒13.05, all P<0.05), and LASSO regression analysis included 3 lncRNAs to construct a risk model. The risk score=0.662 6×AC026356.1+0.213 9×AC026401.3+0.405 6×POLH-AS1. In the model, the overall survival (OS) and progression-free survival (PFS) of patients in the high-risk group were significantly lower than those in the low-risk group (all P<0.05). Multivariate COX regression analysis showed that the model as a risk factor was an independent factor affecting survival (HR=1.375, 95%CI 1.208‒1.566). In the risk model, there were significant differences between high-risk and low-risk immune function pathways, and the response level of high-risk patients to immunotherapy was lower (P<0.05). Conclusion ·The use of a risk model based on palm acylation related lncRNA expression can independently predict the survival period of liver cancer patients, providing reference for patients receiving immunotherapy.

Keywords: hepatocellular carcinoma (HCC) ; long non-coding RNA (lncRNA) ; palmitoylation ; risk model ; immune therapy

PDF (4673KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

于莉, 苏显都, 张敏, 李雅慧, 王乐. 基于生物学分析构建及验证棕榈酰化相关酶长链非编码RNA的肝癌预后风险模型. 上海交通大学学报(医学版)[J], 2023, 43(6): 747-754 doi:10.3969/j.issn.1674-8115.2023.06.011

YU Li, SU Xiandu, ZHANG Min, LI Yahui, WANG Le. Construction and validation of prognostic risk model for hepatocellular carcinoma based on biological analysis of palmitoyl-associated enzyme long-chain non-coding RNA. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(6): 747-754 doi:10.3969/j.issn.1674-8115.2023.06.011

肝细胞癌是原发性肝脏恶性肿瘤,发病率在所有肿瘤中位居第六1。肝细胞癌的高发病率和高致死率使它成为全球第四大癌症相关致死疾病2。棕榈酰化在肝癌的发生发展中发挥重要作用3-4,肝癌组织与正常组织差异的锌指DHHC结构域(zinc finger aspartate-histidine-histidine-cysteine domain,ZDHHC)蛋白家族的蛋白酰基转移酶是一个含有保守结构域Asp-His-His-Cys(DHHC)的酶家族,通过将碳十六脂肪酸棕榈酸酯共价连接到底物蛋白特定半胱氨酸残基的硫醇基团来介导棕榈酰化5。棕榈酰化酶在蛋白质定位、累积、分泌中稳定发挥重要作用6-8。ZDHHC的异常表达参与了各种癌症的发生以及转移,严重影响了癌症患者的治疗和预后9。免疫检查点的棕榈酰化,包括程序性死亡蛋白-1(programmed death-1,PD-1)10、程序性死亡蛋白配体1(programmed death ligand-1,PD-L1)11。靶向PD-L1棕榈酰化使肿瘤细胞对T细胞杀伤敏感,抑制肿瘤生长,而且PD-L1棕榈酰化在稳定PD-L1中发挥重要作用12。ZDHHC3的表达升高与乳腺癌中肿瘤生长增强和患者生存期降低相关13。ZDHHC9失活提高N-Ras驱动的白血病治疗效果14,也促进乳腺癌的免疫治疗应答。棕榈酰酶家族抑制剂水解酶结构域的蛋白17(α/β hydrolase domain-containing protein 17,ABHD17)诱导急性髓性白血病细胞中的N-Ras去棕榈酰化,对N-Ras突变的细胞抑制作用显著15。长链非编码RNA(long non-coding RNA,lncRNA)在表观遗传调控、细胞周期调控和细胞分化调控等众多生命活动中发挥重要作用,同时也可以调控ZDHHC相关酶的表达16。然而,ZDHHC蛋白在肝细胞癌中的表达模式、预后价值和生物学功能尚未系统阐明。本研究利用肝癌数据库对ZDHHC在肝细胞癌中的表达进行了全面的生物信息学分析,旨在为临床医师选择合适的治疗靶点和药物提供更多理论支持。

1 资料与方法

1.1 数据获取

从癌症基因组图谱(The Cancer Genome Atlas,TCGA)下载基因组数据共享(Genomic Data Commons,GDC)网站(https://portal.gdc.cancer.gov/)获取424例肝癌样本的RNA测序数据(包含50例正常组织和374例肝癌样本)和患者的临床资料,删除没有生存时间的样本,删除年龄、性别以及临床分期不全的样本,最终得到370例用于后续分析。

1.2 差异性与相关性分析

应用R语言limma软件包筛选正常组织与肿瘤组织差异的ZDHHC,设定FDR<0.001,Pearson相关性分析筛选ZDHHC相关的lncRNA(相关系数大于0.5,P<0.01)。使用survival包对lncRNA进行单因素Cox回归分析,将单因素COX回归分析结果中P<0.001的lncRNA纳入多因素COX回归分析。同时采用LASSO逐步回归进一步筛选自变量,构建基于lncRNA表达的风险评分公式,即风险分数=lncRNA表达×风险系数

1.3 单/多因素Cox分析及免疫应答预测分析

通过单因素和多因素COX回归分析肝癌预后的独立风险因素。用R语言rms软件包建立nomogram预测模型,所有独立预后参数和相关临床参数都被纳入,采用逐步COX回归模型构建预后列线图,用来预测患者1、3和5年的总生存期(overall survival,OS),对列线图的预测效能进行检验。利用TIDE算法17预测患者对免疫治疗的应答水平。

1.4 统计学分析

采用GraphPad Prism 9.0软件进行数据分析和处理。采用Student's t检验进行基因差异表达分析。通过绘制Kaplan-Meier曲线,统计高、低风险组患者生存期,采用Log-Rank检验评估2组患者生存曲线的差异。采用COX比例风险回归模型评估各因素对预后的影响,行单因素分析和多因素分析,计算风险比(hazard ratio,HR)及其95%置信区间(confidence interval,CI)。计算5年受试者操作特征曲线(receiver operating characteristic curve,ROC curve)中各点的敏感度和特异度之和,取最大点对应的风险评分作为临界值来区分风险等级。计算风险模型1、3和5年曲线下面积(area under the curve,AUC)值,并结合校准分析以判断模型预测生存的准确性。P<0.05表示差异有统计学意义。

2 结果

2.1 ZDHHCs在肝细胞癌的表达模式以及预后评估

图1所示,ZDHHC3~ZDHHC9ZDHHC11~ ZDHHC14、ZDHHC16~ZDHHC18以及ZDHHC20~ ZDHHC24共19个ZDHHC在肝细胞癌组织中的表达显著高于正常组(图1A、B,t为5.475~11.254,均P<0.05),而ZDHHC19在肝细胞癌中表达低于正常组(图1B,t=7.258,P<0.05)。其中,高表达ZDHHC7ZDHHC18ZDHHC23的患者OS相比于低表达患者的OS明显减少(图1C,HR为0.48~2.00,均P<0.05),而低表达ZDHHC19患者的OS相比于高表达ZDHHC19的患者OS明显增加(图1C,HR=0.62,P=0.010)。同时,ZDHHC17ZDHHC23的高表达与无进展生存期(progression-free survival,PFS)呈负相关(图1C,HR为0.60~1.56,均P<0.05)。

图1

图1   影响肝癌患者预后的相关lncRNA单因素分析

Note: A/B. Expression of ZDHHCs [ZDHHC1ZDHHC9 and ZDHHC11ZDHHC12 (A), and ZDHHC13ZDHHC24 (B)] in hepatocellular carcinomas (n=370) and normal liver tissues (n=50). *P<0.05. C. Kaplan-Meier survival analysis and Log-Rank test were performed on different ZDHHCs. The median of the high-risk and low-risk groups (n=185) was taken as the cutoff. D. ZDHHC-related lncRNA. E. Univariate Cox regression analysis to screen prognostic lncRNAs associated with ZDHHC.

Fig 1   Univariate analysis of associated lncRNAs affecting prognosis in patients with hepatocellular carcinoma


2.2 基于棕榈酰化相关lncRNA的肝癌风险模型构建

棕榈酰化基因关联的lncRNA共计656个(图1D,均相关系数>0.5且P<0.001),单因素COX回归筛选出影响肝癌生存期的22个棕榈酰化相关lncRNA(图1E)。结合生存时间、状态和lncRNA表达采用LASSO回归分析,在模型达到最小λ后(图2A),构建了一个3个棕榈酰化相关lncRNA(AC026356.1、AC026401.3和POLH-AS1)组成的风险预测模型,风险模型分数=0.662 6×AC026356.1+0.213 9×AC026401.3+0.405 6×POLH-AS1。参照风险模型运算公式计算出每个肝癌患者的风险值,取中位数将患者划分为高风险组和低风险组(图2B、C)。生存分析发现,高风险组的OS和PFS明显低于低风险组(图2D、E,均P<0.05)。

图2

图2   构建基于ZDHHC相关lncRNA的肝癌患者风险模型

Note: A. LASSO regression analysis. B. Distribution of risk scores in all samples for high-risk and low-risk groups. C. Distribution of follow-up time for all samples. D/E. OS (D) and PFS (E) of patients in high-risk and low-risk groups.

Fig 2   Construction of a risk model for liver cancer patients based on ZDHHC-related lncRNA


2.3 风险模型的验证

ROC曲线评估风险模型的敏感度和特异度,AUC为0.730(图3A)。计算一致性指数(consistency index,C-index)判断模型的准确性(图3B),显示依据棕榈酰化蛋白ZDHHC相关的lncRNA建立风险模型准确性较高。单因素分析发现分期和风险评分可作为危险因素(图3C),多因素分析显示分期和风险评分同样可以作为独立的危险因素(图3D)。风险评分与患者的预后独立相关(HR=1.375,95%CI 1.208~1.566)。

图3

图3   单因素和多因素回归分析

Note: A/B. ROC (A) and C-index (B) based on risk score, age, grade, and stage. C/D. Univariate (C) and multivariate (D) COX regression analysis suggested the impact of clinical factors and risk scores on prognosis.

Fig 3   Single factor and multiple regression analysis


2.4 风险模型的预测能力

为探讨风险模型在临床中的应用价值,本研究整合了患者的临床特征并将风险评分纳入多变量Cox回归分析构建列线图(图4A),根据临床指标和风险评分预测患者的生存时间,通过AUC曲线和校准提示该模型预测生存的准确性较高(图4B、C)。

图4

图4   列线图创建与预后预测校准

Note: A. The nomogram predicted 1-year, 3-year, and 5-year survival for hepatocellular carcinoma patients. B. ROC curves for 1-year, 3-year, and 5-year OS. C. Calibration curve analysis.

Fig 4   Column chart creation and prognostic prediction calibration


2.5 高、低风险组免疫功能分析与免疫治疗应答预测

棕榈酰化通过改变肿瘤微环境影响肿瘤免疫治疗18。因此,本研究评估了高、低风险组的免疫功能,其中二型干扰素应答(type Ⅱ interferon response)、抗原呈递共刺激(antigen presenting cell co-stimulation,APC co-stimulation)、趋化因子受体(chemokine receptor,CCR)、T细胞共刺激因子(T cell co-stimulation)等多个免疫通路在高、低风险组存在显著差异(图5A,t为8.247~14.851,均P<0.05)。进一步利用TIDE数据库(http://tide.dfci.harvard.edu/)预测高低风险组对免疫治疗的应答水平,预测结果显示,低风险组对免疫治疗的应答水平显著高于高风险组(图5B,t=7.472,P<0.05)。综上所述,高危人群之间的免疫状态完全不同,提示靶向棕榈酰化相关分子结合肝细胞瘤免疫治疗具有一定的临床意义。

图5

图5   高、低风险组免疫应答相关通路分析

Note: A. Correlation between high and low risk groups and immune-related pathways. B. TIDE predicted the response to immunotherapy in both risk groups.*P<0.05.

Fig 5   Analysis of pathways related to immune response in high-risk and low-risk groups


3 讨论

棕榈酰化是蛋白质翻译后修饰的一种,其中棕榈酸酯通过硫酯连接与绝大多数半胱氨酸残基共价连接(也称为s-棕榈酰化)。棕榈酰化通过影响蛋白膜锚定、转运、相互作用和降解,在人类生理和病理过程中发挥重要作用。ZDHHC家族不仅调节正常的生理过程,而且参与癌症的发生发展。敲低ZDHHC5、EZH2的棕榈酰转移酶,可显著抑制胶质瘤肿瘤的生长19。越来越多的研究表明棕榈酰化或棕榈酰转移酶可能成为癌症治疗的新靶点20。LIU等20发现ZDHHC2、3、6、14、15、21及23在肾透明细胞癌中表达下调,且ZDHHC低表达与不良预后相关。本研究发现多数ZDHHC蛋白在肝细胞癌样本中表达异常,其中ZDHHC23在肝癌中表达显著升高。高表达ZDHHC23也提示不良预后。ZDHHC23在胶质瘤中表达异常,靶向ZDHHC23能够抑制胶质瘤细胞的恶性表型。因此,进一步了解肝细胞癌中ZDHHC的表达模式和功能机制,对未来靶向ZDHHC治疗肝癌有重要意义。

本研究检测在肝癌样本和正常样本差异表达的ZDHHC蛋白相关的lncRNA,发现ZDHHC与656个lncRNA的表达具有显著相关性(均P<0.05)。其中有22个lncRNA可作为不良预后的标志物,利用LASSO回归优化筛选指标,筛选出3个影响预后的lncRNA。lncRNA POLH-AS1和AC026401.3在多个构建肝癌风险模型的研究中也被筛选出21-22,说明这2个lncRNA对于肝癌患者的预后发挥重要作用,但是这2个lncRNA的细胞学功能以及表达的临床意义需要进一步实验验证。本研究采用的LASSO回归计算模型纳入最小因素是在模型预测中广泛使用的。XU等4鉴定了24个与铁死亡相关的差异表达lncRNA,使用LASSO算法和Cox回归模型从TCGA训练数据集和GEO测试数据集构建和验证预后风险评分模型;基于9个lncRNA(CTD-2033A16.3、CTD-2116N20.1、CTD-2510F5.4、DDX11-AS1、LINC00942、LINC01224、LINC01231、LINC01508和ZFPM2-AS1)构建风险模型,为患者的预后和免疫反应提供了个性化的预测工具。本研究将所有样本作为训练集,构建模型的样本足够大。虽未进行外部数据集验证,但是将临床特征与风险分组进行了多因素Cox回归分析,显示即使纳入其他临床变量后,风险分组仍然可以作为独立预后因素。因此,基于ZDHHC相关lncRNA构建的风险模型对于免疫治疗的选择可发挥重要作用。

尽管该模型对于肝癌的免疫治疗具备临床指导作用,但依然存在几个局限性。首先,虽然筛选出的lncRNA(AC026356.1、AC026401.3和POLH-AS1)在TCGA肝癌数据中体现了预后价值,但缺乏大样本的外部数据集进一步验证。其次,本研究是以预后和临床表征构建的风险模型,排除了一些差异更为显著的lncRNA,这降低了模型的预测价值。第三,缺少lncRNA相关的生物功能依据,不能体现对棕榈酰化过程的作用,因此还需要更多的实验证据。

综上所述,棕榈酰化相关lncRNA可能在肝癌的发生发展中发挥重要作用。基于lncRNA构建的风险模型可较为准确地预测出肝癌患者的1年、3年、5年生存时间,并结合免疫细胞浸润水平比较高、低风险组的免疫治疗应答水平,为肝癌患者提供新的免疫治疗策略。

作者贡献声明

于莉、苏显都参与了实验设计,于莉、张敏参与了论文的写作和修改,李雅慧、王乐参与了数据收集及分析。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

YU Li and SU Xiandu participated in the experimental design. YU Li and ZHANG Min participated in the writing and revision of the paper, and LI Yahui and WANG Le participated in the data collection and analysis. All authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

黄飞虎, 余姣, 万谟彬. 肝细胞癌的筛查与监测[J]. 肝脏, 2021, 26(10): 1075-1077.

[本文引用: 1]

HUANG F H, YU J, WAN M B. Screening and monitoring of hepatocellular carcinoma[J]. Liver, 2021, 26(10): 1075-1077.

[本文引用: 1]

WANG Q H, XIA D D, BAI W, et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: a multicentre observational study[J]. J Hepatol, 2019, 70(5): 893-903.

[本文引用: 1]

肖姗姗, 李越, 周艳阳, 等. 基于TCGA数据库构建三阴性乳腺癌预后相关的ceRNA调控网络及分析[J]. 现代检验医学杂志, 2023, 38(1): 83-88, 106.

[本文引用: 1]

XIAO S S, LI Y, ZHOU Y Y, et al. Construction and analysis of ceRNA regulatory network related to prognosis of triple negative breast cancer based on TCGA database[J]. Journal of Modern Laboratory Medicine, 2023, 38(1): 83-88, 106.

[本文引用: 1]

XU Z J, PENG B, LIANG Q J, et al. Construction of a ferroptosis-related nine-lncRNA signature for predicting prognosis and immune response in hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 719175.

[本文引用: 2]

LEMONIDIS K, WERNO M W, GREAVES J, et al. The zDHHC family of S-acyltransferases[J]. Biochem Soc Trans, 2015, 43(2): 217-221.

[本文引用: 1]

ZMUDA F, CHAMBERLAIN L H. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases[J]. J Biol Chem, 2020, 295(43): 14640-14652.

[本文引用: 1]

SALAUN C, LOCATELLI C, ZMUDA F, et al. Accessory proteins of the zDHHC family of S-acylation enzymes[J]. J Cell Sci, 2020, 133(22): jcs251819.

FRASER N J, HOWIE J, WYPIJEWSKI K J, et al. Therapeutic targeting of protein S-acylation for the treatment of disease[J]. Biochem Soc Trans, 2020, 48(1): 281-290.

[本文引用: 1]

ZHOU B H, HAO Q Y, LIANG Y M, et al. Protein palmitoylation in cancer: molecular functions and therapeutic potential[J]. Mol Oncol, 2023, 17(1): 3-26.

[本文引用: 1]

YAO H, LI C S, HE F, et al. A peptidic inhibitor for PD-1 palmitoylation targets its expression and functions[J]. RSC Chem Biol, 2021, 2(1): 192-205.

[本文引用: 1]

YANG Y, HSU J M, SUN L L, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth[J]. Cell Res, 2019, 29(1): 83-86.

[本文引用: 1]

KINNEY N, VARGHESE R T, ANANDAKRISHNAN R, et al. ZDHHC3 as a risk and mortality marker for breast cancer in African American women[J]. Cancer Inform, 2017, 16: 1176935117746644.

[本文引用: 1]

LIU P, JIAO B, ZHANG R, et al. Palmitoylacyltransferase Zdhhc9 inactivation mitigates leukemogenic potential of oncogenic nras[J]. Leukemia, 2016, 30(5): 1225-1228.

[本文引用: 1]

REMSBERG J R, SUCIU R M, ZAMBETTI N A, et al. ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth[J]. Nat Chem Biol, 2021, 17(8): 856-864.

[本文引用: 1]

JIANG P, GU S Q, PAN D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558.

[本文引用: 1]

YOKOI N, FUKATA Y, SEKIYA A, et al. Identification of PSD-95 depalmitoylating enzymes[J]. J Neurosci, 2016, 36(24): 6431-6444.

[本文引用: 1]

LIN H N. Protein cysteine palmitoylation in immunity and inflammation[J]. FEBS J, 2021, 288(24): 7043-7059.

[本文引用: 1]

CHEN X R, MA H H, WANG Z, et al. EZH2 palmitoylation mediated by ZDHHC5 in p53-mutant glioma drives malignant development and progression[J]. Cancer Res, 2017, 77(18): 4998-5010.

[本文引用: 1]

TANG F, YANG C, LI F P, et al. Palmitoyl transferases act as potential regulators of tumor-infiltrating immune cells and glioma progression[J]. Mol Ther Nucleic Acids, 2022, 28: 716-731.

[本文引用: 1]

LIU Z, LIU C, XIAO M M, et al. Bioinformatics analysis of the prognostic and biological significance of ZDHHC-protein acyltransferases in kidney renal clear cell carcinoma[J]. Front Oncol, 2020, 10: 565414.

[本文引用: 2]

FHU C W, ALI A. Protein lipidation by palmitoylation and myristoylation in cancer[J]. Front Cell Dev Biol, 2021, 9: 673647.

[本文引用: 1]

ZHANG Z X, LI X, YANG F, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis[J]. Nat Commun, 2021, 12(1): 5872.

[本文引用: 1]

/