上海交通大学学报(医学版), 2023, 43(7): 821-828 doi: 10.3969/j.issn.1674-8115.2023.07.004

创新团队成果专栏

AAK1相互作用蛋白的筛选及其调控细胞内整体翻译水平的研究

姜贵先,1,2,3, 胡荣贵4, 吴皓,1,2,3

1.上海交通大学医学院附属第九人民医院耳鼻咽喉头颈外科,上海 200011

2.上海交通大学医学院耳科学研究所,上海 200092

3.上海市耳鼻疾病转化医学重点实验室,上海 200092

4.中国科学院大学分子卓越创新中心,上海 200032

Screening of AAK1 interaction proteins and its role in regulating global translation level in cells

JIANG Guixian,1,2,3, HU Ronggui4, WU Hao,1,2,3

1.Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

2.Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

3.Shanghai Key Laboratory of Translation Medicine on Ear and Nose Diseases, Shanghai 200092, China

4.Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Shanghai 200032, China

通讯作者: 吴 皓,电子信箱:wuhao@shsmu.edu.cn

编委: 吴洋

收稿日期: 2023-03-21   接受日期: 2023-05-09   网络出版日期: 2023-07-28

基金资助: 国家自然科学基金.  81970872
上海市耳鼻疾病转化医学重点实验室.  14DZ2260300
上海市临床重点专科建设项目.  shslczdzk00802
上海申康医院发展中心临床创新三年行动计划.  SHDC2020CR1044B

Corresponding authors: WU Hao, E-mail:wuhao@shsmu.edu.cn.

Received: 2023-03-21   Accepted: 2023-05-09   Online: 2023-07-28

作者简介 About authors

姜贵先(1997—),男,硕士生;电子信箱:jiangdaxian@hotmail.com。 E-mail:jiangdaxian@hotmail.com

摘要

目的·探究衔接子相关蛋白激酶1(adaptor-associated protein kinase 1,AAK1)新的相互作用蛋白,以及除网格蛋白介导的内吞作用外AAK1介导的生物学功能。方法·通过在HEK-293T细胞中分别外源性转染带有标签的AAK1载体与空白对照载体,利用标签特异性的琼脂糖凝胶进行免疫共沉淀(co-immunoprecipitation,CoIP),并联合质谱分析的方法获得潜在与AAK1相互作用的蛋白;通过CoIP初步验证质谱结果;通过荧光共聚焦成像观察AAK1与其潜在结合蛋白在细胞内的空间定位;通过体外纯化重组蛋白,利用谷胱甘肽巯基转移酶融合蛋白沉降实验(glutathione-S-transferase pulldown,GST Pulldown)进一步明确蛋白间是否为直接的相互作用;通过嘌呤霉素结合实验观察AAK1对于细胞内整体翻译水平的调控作用。结果·质谱结果提示AAK1可能与以脆性X相关蛋白1(fragile X mental retardation syndrome-related protein 1,FXR1)、FXR2、脆性X智力低下蛋白(fragile X mental retardation protein 1,FMRP)三者为核心的一系列蛋白形成复合体。外源性转染AAK1-3xFLAG及FMRP-MYC质粒,利用抗FLAG琼脂糖凝胶富集AAK1-3xFLAG后,可以检测到FMRP-MYC的表达;利用内源性抗体进行CoIP,发现富集AAK1可以检测到FMRP的表达。荧光共聚焦成像显示EGFP-AAK1与mCherry-FMRP在细胞质中存在部分空间共定位。GST Pulldown显示FMRP可以直接沉淀HIS6-AAK1重组蛋白。嘌呤霉素结合实验显示相同时间内嘌呤霉素标记的细胞内新合成肽段数量与AAK1蛋白表达量呈正相关。结论·AAK1与FMRP在细胞质内存在直接的相互作用,且AAK1可以提高细胞内的翻译水平。

关键词: 衔接子相关蛋白激酶1 ; 翻译 ; 质谱 ; 蛋白相互作用

Abstract

Objective ·To investigate noval interacting partners for adaptor-associated protein kinase 1 (AAK1) and AAK1-mediated biological functions besides clathrin-mediated endocytosis. Methods ·The labeled AAK1 vector and the blank control vector were transfected in HEK-293T cells, and the potential AAK1 interacting proteins were obtained by co-immunoprecipitation with agar-specific gel and mass spectrometry. Further verifications were performed by CoIP and fluorescence-based imaging. Recombinant proteins were purified in vitro and the direct interaction between proteins were confirmed by glutathione-S-transferase pulldown (GST Pulldown) assay. The regulation of AAK1 in the global protein synthesis was explored by puromycin incorporation assay. Results ·Mass spectrometry results showed that AAK1 was associated with a series of proteins, including fragile X mental retardation syndrome-related protein 1 (FXR1), FXR2 and fragile X mental retardation protein 1 (FMRP). Enriching with anti-FLAG agarose gels after exogenous transfecting of AAK1-3xFLAG and FMRP-MYC plasmids, the expression of FMRP-MYC was detected. The expression of FMRP could also be detected by CoIP with endogenous AAK1 antibodies. Fluorescence-based imaging showed that they were spatially colocalized in the cytoplasm. GST Pulldown assay showed that FMRP could pulldown recombinant HIS6-AAK1 protein. Puromycin incorporation assay showed that in the same amount of time, the number of newly synthesized peptides labeled with puromycin was positively correlated with AAK1 protein expression. Conclusion ·AAK1 directly interacts with FMRP in cytoplasm and could up-regulate global protein synthesis level.

Keywords: adaptor-associated protein kinase 1 (AAK1) ; translation ; mass spectroscopy ; protein-protein interaction

PDF (2709KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

姜贵先, 胡荣贵, 吴皓. AAK1相互作用蛋白的筛选及其调控细胞内整体翻译水平的研究. 上海交通大学学报(医学版)[J], 2023, 43(7): 821-828 doi:10.3969/j.issn.1674-8115.2023.07.004

JIANG Guixian, HU Ronggui, WU Hao. Screening of AAK1 interaction proteins and its role in regulating global translation level in cells. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(7): 821-828 doi:10.3969/j.issn.1674-8115.2023.07.004

衔接子相关蛋白激酶1(adaptor-associated protein kinase 1,AAK1)于2002年被首次鉴定,并发现其与网格蛋白介导的内吞作用(clathrin-mediated endocytosis,CME)中的关键分子衔接蛋白2(adaptor protein2,AP2)结合,通过磷酸化AP2的μ亚基(AP2 complex subunit μ,AP2M1)对CME过程进行调控1-2。因此,AAK1也被称为AP2相关蛋白激酶1。目前,关于AAK1的生物学功能主要围绕CME展开。研究发现,在Wnt信号刺激下,AAK1通过加强AP2M1磷酸化程度,使低密度脂蛋白相关受体6(low-density lipoprotein receptor related protein 6,LRP6)通过CME途径从细胞膜转移到细胞质内3;AAK1磷酸化内吞衔接蛋白Numb,使其从细胞膜通过CME途径进入内体4。除了磷酸化作用外,AAK1还以非磷酸化方式直接结合并稳定活化形式的神经源性基因座缺口同源蛋白1(neurogenic locus notch homolog protein 1,Notch1),使其进入内体并增强其转录活性5。AAK1也参与疾病的发生和发展。超氧化物歧化酶1蛋白(superoxide dismutase 1,SOD1)突变(SOD1G85R)与肌萎缩侧索硬化有关,而AAK1仅与SOD1G85R结合且不与SOD1WT结合,并且AAK1蛋白水平在肌萎缩侧索硬化患者中较正常人低6。部分病毒通过CME途径进入人体细胞,而AAK1参与调节丙型肝炎病毒7、登革热病毒8、狂犬病病毒9以及在全球范围内流行的新型冠状病毒10的进入与细胞间的扩散。因此,也有针对AAK1开展的各类化合物的研发11-12。鉴于AAK1对生理、病理过程均有广泛的调控作用,有必要对AAK1开展更深入的研究,探索其更多的分子机制。

脆性X智力低下蛋白(fragile X mental retardation protein 1,FMRP)是脆性X相关(fragile X mental retardation syndrome-related,FXR)蛋白家族的一员,其与脆性X相关蛋白1(FXR protein 1,FXR1)和FXR2具有显著的同源性,在结构、功能上相似13。FXR蛋白家族的表达异常是脆性X综合征的直接病因。该病是以智力低下和自闭症样行为为主的一类遗传性疾病,其中以FMRP异常为主14。FMRP的功能繁多,可以从多个层面对机体进行调控:① 在DNA层面,调控转录因子与染色质修饰酶的表达与活性15-16。② 在蛋白层面,通过直接与离子通道蛋白结合进而影响其兴奋性17。③ 在RNA层面,由于FMRP是RNA结合蛋白,FMRP还通过诱导核糖体停滞18、与RNA直接结合调控其稳定性19、调控RNA在细胞内定位20等方式参与调控RNA代谢。运用定量质谱比较青春期和成年期的Fmrp敲除和野生型2种小鼠皮层突触的蛋白质表达情况发现,Fmrp敲除使青春期小鼠大量突触蛋白上调,而在成年小鼠中Fmrp敲除影响较小,表明FMRP的调控还具有时间特异性21。由此可见,FMRP的分子机制是十分复杂的。目前,对FMRP的认识相较于FXR1、FXR2更加深入,研究上常以对FMRP的研究为基础反推至FXR1与FXR2。

嘌呤霉素结合实验是通过非放射性手段观察细胞内整体翻译水平的一种方法。由于嘌呤霉素具有类似tRNA分子末端的结构,能代替氨酰-tRNA与核糖体A位结合,加入正在翻译中的肽链并导致蛋白质合成终止,随后末端含有嘌呤霉素的不成熟的多肽被释放到细胞质中。因此,将嘌呤霉素加入细胞内培养一段时间后,运用嘌呤霉素特异性的抗体,理论上可以检验这段时间内细胞内新蛋白合成的情况,即细胞内整体翻译水平22

目前,尚无针对AAK1相互作用蛋白筛选的文献报道。本研究拟通过免疫共沉淀联合质谱(co-immunoprecipitation/mass spectroscopy,CoIP/MS)分析的方式入手,寻找其新的相互作用蛋白,以期为研究其潜在的分子机制提供思路。

1 材料与方法

1.1 材料

1.1.1 细胞

人胚肾细胞HEK-293T以及宫颈癌细胞Hela均购于中国科学院上海细胞库。

1.1.2 质粒

所有基因模板均从HEK-293T细胞反转录的cDNA文库中设计特异性引物,PCR合成并通过Sanger测序确保序列正确。pcDNA3.1-AAK1-3xFLAG(BamH1-Xho1)、pcDNA3.1-FMRP-MYC(EcoR1-Age1)、pGEX4T-1-FMRP(EcoR1-Not1)、pET28a-AAK1(EcoR1-Xho1)、pmCherry-C1-FMRP(Xho1-BamH1)、pEGFP-C1-AAK1(Xho1-BamH1)均通过同源重组构建。使用pcDNA3.1-3xFLAG作为空白对照载体。

1.1.3 主要试剂及仪器

DMEM培养基(10-013-CV)购自美国Corning公司,LB培养基(B540111-0500)购自中国生工生物工程股份有限公司,胎牛血清购自中国苏州双洳生物科技有限公司,青霉素链霉素混合物(C0222)、考马斯亮蓝染色试剂盒(P0017A)购自中国碧云天公司,Lipo2000转染试剂(11668019)、淬灭封片剂(P36983)均购自美国Invitrogen公司,HIS抗体(H1029)、FLAG抗体(F1804)、puromycin抗体(MABE343)、Anti-FLAG M2 beads(A2220-5ML)、Protein G Agarose beads(16-266)均购自美国Sigma公司,MYC抗体(2278T)购自美国Cell Signaling Technology公司,actin抗体(23660-1-AP)、FMRP抗体(66548-1-Ig)购自美国Proteintech公司,AAK1抗体(A302-146A-T)购自美国Bethyl公司,谷胱甘肽巯基转移酶(glutathione-S-transferase,GST)抗体(sc-138)购自美国Santa Cruz公司,过氧化物酶标记的山羊抗小鼠IgG(115-035-003)、过氧化物酶标记的山羊抗兔IgG(111-035-003)购自美国Jacksonlab公司,同源重组酶(AG11808)购自中国艾科瑞公司,DH5α感受态、Rssetta感受态均购自中国擎科生物公司。细胞CO2培养箱购自美国Thermo Scientific公司,移液枪、离心机、PCR仪均购自德国Eppendorf公司,蛋白电泳槽、化学发光仪均购自中国天能公司。

1.2 方法

1.2.1 细胞培养、瞬时转染及RNA干扰

HEK-293T和Hela细胞培养在含有10%胎牛血清以及100 U/mL青霉素和100 μg/mL链霉素的完全DEME培养基中。细胞在37 ℃含有5% CO2的培养箱中培养。根据Lipo2000说明书进行瞬时过表达转染或RNA干扰。干扰小RNA(small interfering RNA,siRNA)序列如下。si-AAK1-F:CAAGAAUAUUGU GGGUUACAUUGAU;si-AAK1-R:AUCAAUGUAA CCCACAAUAUUCUUG。

1.2.2 重组蛋白的表达与纯化

将pGEX6P-1-FMRP、pET28a-AAK1质粒转化到Rssetta感受态中,挑取单克隆菌落到10 mL对应抗性LB培养基中,在37 ℃摇床中以220 r/min培养12 h;随后接入1 L对应抗性LB培养基继续培养3 h,加入异丙基-β-D-硫代半乳糖苷(isopropyl-β-D-1-thiogalactopyranoside,IPTG)至0.5 mmol后转移至16 ℃摇床中,160 r/min诱导表达18 h;第2日,离心留取底部细菌。对于HIS标签蛋白,用Ni-NTA Binding buffer(50 mmol/L Na2HPO4,500 mmol/L NaCl,20 mmol/L咪唑,0.1% Triton X-100,1 mmol/L二硫苏糖醇)重悬细菌。蛋白用Ni-NTA琼脂糖凝胶微球(美国GE公司)纯化,操作参考说明书。用HIS清洗液(50 mmol/L Na2HPO4,500 mmol/L NaCl,40 mmol/L咪唑,0.1% Triton X-100,1 mmol/L DTT)清洗琼脂糖凝胶微球(agarose beads),并用HIS洗脱液(50 mmol/L Na2HPO4,300 mmol/L NaCl,250 mmol/L咪唑)洗脱蛋白。对于GST标签蛋白,用GST蛋白缓冲液[50 mmol/L Tris-Cl(pH值7.5),150 mmol/L NaCl,0.5% NP-40,1 mmol/L EDTA,1 mmol/L二硫苏糖醇]重悬细菌,使用Glutathione Sepharose Fast Flow beads(中国生工公司)纯化蛋白,操作方法参考说明书。使用GST蛋白缓冲液清洗beads并用GST洗脱液[200 mmol/L Tris-Cl(pH值8.0),20 mmol/L谷胱甘肽]洗脱蛋白。所有洗脱的蛋白在磷酸盐缓冲溶液(phosphate buffered saline,PBS)中4 ˚C透析过夜,随后分装保存在-80 ˚C冰箱中。

1.2.3 CoIP与蛋白质印迹法检测

细胞用预冷PBS清洗2次后,加入含有蛋白酶抑制剂的CoIP裂解液,超声破碎后,在4 ℃下,15 000×g离心10 min,去除细胞碎片;取上清加入对应抗体的beads,于旋转混匀仪上4 ℃过夜结合。第2日,用预冷的CoIP裂解液清洗beads 5次后,加入SDS-PAGE loading buffer,在金属加热仪中100 ℃变性15 min;随后,将样品上于SDS-PAGE胶中进行蛋白分离,并转移至PVDF膜中,用10%脱脂牛奶封闭后于4℃下与一抗孵育过夜。第3日,与二抗室温孵育1 h后用TBST洗3次,在化学发光仪中检测。

1.2.4 质谱法鉴定AAK1的相互作用蛋白

将pcDNA3.1-3xFLAG质粒作为空白对照组,pcDNA3.1-AAK1-3xFLAG质粒作为实验组,分别转染到HEK-293T细胞中。转染48 h后按CoIP的方法用FLAG-beads IP样品,期间留取部分样品进行考马斯亮蓝染色与蛋白质印迹法(Western blotting)检测。考马斯亮蓝染色按试剂盒说明书操作,并脱色使用。最终用8 mol/L尿素(pH值8.5)洗脱蛋白,经过还原和烷基化处理后,加入胰蛋白酶(Trypsin),37 ℃条件下酶解20 h。酶解产物脱盐后冻干,复溶于0.1%甲酸溶液中。使用nano-scale HLPC-MS系统进行分析,质谱测试原始文件用Proteome Discoverer 1.4软件检索人源数据库,得到鉴定的蛋白质结果。计算实验组与对照组中鉴定到的蛋白二级质谱图数量,并用前者数值减去后者;若差值≥2,初步认为是潜在与AAK1相互作用的蛋白。

1.2.5 荧光共聚焦成像实验

培养Hela细胞至合适密度,转染pEGFP-C1-AAK1与pmCherry-C1-FMRP质粒;转染36 h后用PBS清洗1次,加入4%多聚甲醛室温避光固定细胞5 min,用0.3% Triton X-100透膜2 min,加入DAPI复染细胞核,室温避光孵育15 min;用PBS洗3次,使用荧光共聚焦显微镜(Leica TCS SP8)拍摄。

1.2.6 GST沉降实验

GST沉降实验(GST Pulldown)将纯化的GST以及HIS蛋白加入GST沉降缓冲液[20 mmol/L Tris-Cl(pH值7.6),100 mmol/L NaCl,5 mmol/L MgCl2,1 mmol/L EDTA,1 mmol/L二硫苏糖醇,0.5% NP-40]中,于4 ℃下旋转混匀2 h,随后加入清洗过的Glutathione Sepharose 4B(美国GE公司)继续混匀2 h,用GST沉降缓冲液清洗5次凝胶微球后,采用Western blotting检测。

1.2.7 嘌呤霉素结合试验

在细胞密度为70%~80%时吸尽旧培养基,加入含有10 μg/mL嘌呤霉素的新鲜培养基;在细胞培养箱中继续培养20 min,随后收取蛋白。

2 结果

2.1 AAK1相互作用蛋白筛选

运用CoIP联合质谱(CoIP/MS)分析的方法(图1A),共获得了551个潜在与AAK1结合的候选蛋白。对CoIP过程中留取的部分样品进行考马斯亮蓝染色,发现实验组在AAK1预期大小的140 000处存在清晰条带,而空白对照组未在该位置观察到明显条带,且Western blotting结果表明该条带特异性表达FLAG标签(图1B)。以上结果表明,实验成功富集到了AAK1。对质谱结果进行整理并罗列其中部分结果,发现AAK1表达量在实验组中最多,而对照组中未被鉴定到;并且很多已知与AAK1结合的蛋白,如AP2复合物各个亚基和重肽网格蛋白(clathrin heavy chain,CLTC)等均被鉴定到,提示质谱结果具有一定的可信度和参考价值。此外,在该AAK1相互作用蛋白质谱中还鉴定到一部分以FXR蛋白家族为核心的相互作用的蛋白(图2)。

图1

图1   利用CoIP/MS筛选AAK1潜在的相互作用蛋白

Note: A. Schematic of CoIP/MS samples preparation workflow. B. Leaving samples for Coomassie brilliant blue staining or Western blotting.

Fig 1   Screening of potential AAK1 interaction proteins by CoIP/MS


图2

图2   AAK1相互作用蛋白质谱

Note: Poteintial AAK1 interactors were divided into AAK1-associated proteins and FMRP-associated proteins. Red, yellow and green respectively represents high, medium and low level of relative protein expression. AAK1, FMRP, FXR1 and FXR2 are highlighted in red.

Fig 2   List of potential AAK1 interaction proteins


2.2 AAK1FMRP在细胞质直接结合

在HEK-293T细胞中瞬时过表达带有标签的AAK1FMRP质粒,利用anti-FLAG beads富集即通过外源性CoIP发现AAK1-3xFLAG与FMRP-MYC可以在体内形成复合体(图3A)。随后,通过抗体直接对细胞裂解液进行富集,即通过内源性CoIP进一步验证了AAK1和FMRP在体内形成复合体(图3B)。通过在Hela细胞中过表达带有荧光标签的质粒,可以观察到EGFP-AAK1与mCherry-FMRP主要在细胞质中存在部分共定位(图3C)。在体外通过GST Pulldown实验,发现HIS6-AAK1与FMRP直接结合(图3D)。以上结果表明AAK1与FMRP可以在细胞质内直接结合。

图3

图3   AAK1FMRP在细胞质内的结合

Note: A.AAK1-3xFLAG and FMRP-MYC formed a complex in HEK-293T cells, detected by CoIP assay by using anti-FLAG beads, followed by immunoblotting with anti-MYC and anti-FLAG antibodies. B. Endogenous AAK1 and FMRP formed a complex in HEK-293T cells, as demonstrated by CoIP assay by using anti-IgG or anti-AAK1, followed by immunoblotting with anti-FMRP or anti-AAK1 antibodies. C. EGFP-tagged AAK1 co-localized with mCherry-tagged FMRP in cytoplasm of Hela cells. Hela cells were co-transfected with plasmids encoding mCherry-FMRP and EGFP-AAK1. The nuclear of cells was visualized with DAPI staining, and then the fluorescence were detected by confocal microscopy. D. GST Pulldown assays indicated that FMRP protein interacted directly with HIS6-tagged AAK1. PD—GST Pulldown.

Fig 3   Direct interaction between AAK1 and FMRP in cytoplasm


2.3 AAK1调控细胞内整体翻译水平

在HEK-293T细胞内过表达FMRP并通过Western blotting检测发现,FMRP蛋白表达量升高后嘌呤霉素标记的条带减少(图4A),提示FMRP增加后细胞内整体翻译水平下降。而在细胞内通过siRNA短暂干扰FMRP后,嘌呤霉素条带增加(图4B),提示FMRP减少后细胞内整体翻译水平上升。随后,在细胞内过表达AAK1,发现细胞内整体翻译水平上升(图4C),而干扰AAK1后整体翻译水平下降(图4D),提示AAK1可以正向调控细胞内整体翻译水平。

图4

图4   通过嘌呤霉素结合实验验证AAK1对细胞内整体翻译水平的调控作用

Note: A. Transient overexpression of FMRP-down-regulated global protein synthesis in cells. B. Transient interference of FMRP with siRNA-up-regulated global protein synthesis in cells. C. Transient overexpression of AAK1-up-regulated global protein synthesis in cells. D. Transient interference of AAK1 with siRNA-down-regulated global protein synthesis in cells.

Fig 4   Verification of AAK1 regulation on protein synthesis in cells by puromycin incorporation assays


3 讨论

CME是生物体摄取大分子物质的重要途径,具有复杂的动态变化过程。AAK1通过磷酸化AP2M1调控网格蛋白的组装。随着对AAK1探索的逐渐深入,相关研究已经涵盖了AAK1各个亚型鉴定123、分子功能24、结构解析25、抑制剂开发26、临床药效27等诸多方面,并成功从实验室过渡到临床转化阶段。AAK1对于病理生理过程具有重要的意义,除了参与CME功能外,是否存在其他未知的分子机制,有待深入研究。本研究发现,AAK1与FMRP结合,以及AAK1正向调控翻译水平,很可能是除CME外的一种新功能。

FMRP具有多种结构域,包括3个核不均一核酸蛋白K同源结构域(KH domain)、1个精氨酸甘氨酸簇结构域(RGG domain)以及2个Tudor结构域(AG1与AG2)。这些结构域均与RNA结合有关。因此,单从结构域种类即可以看出FMRP参与调控mRNA翻译的潜力28。尽管利用各种技术,如RNA免疫共沉淀(RNA immunoprecipitation,RIP)、紫外交联免疫沉淀(crosslinking immunoprecipitation,CLIP)等进行组学测序提示FMRP与1 000余种mRNA结合1829-31,但得到实验充分验证的数量并不多,且组学间差异较大。但是,较为统一的是FMRP主要结合在RNA的编码区域,这与大多数RNA结合蛋白结合在RNA的非翻译区不同。这些数据提示了FMRP在不同时间、空间上复杂的调控机制。在神经系统中,对于FMRP,研究较多的生物学功能是结合并抑制一部分mRNA的翻译32。有研究指出,FMRP可以调控囊泡循环以及突触可塑性33,而AAK1同样广泛表达在神经系统以及突触囊泡中34。因此,两者的结合对于神经系统的调控,在空间上存在一定的可能性。

本研究通过CoIP/MS分析,对AAK1潜在的相互作用蛋白进行了筛选,并通过体内体外实验证明AAK1与FMRP之间的直接结合;此外,通过嘌呤霉素结合实验验证FMRP负向调控整体翻译水平,与已有研究结果一致,表明该实验具有一定的可信度;并在此基础上,发现AAK1作为一个磷酸激酶可以调控细胞内整体翻译。根据已有的经验,磷酸激酶不太可能如RNA结合蛋白一样直接参与调控蛋白的翻译,因此推测AAK1有可能通过干扰FMRP的翻译抑制作用进而提高细胞内整体翻译水平,并且在神经系统中发挥了一定的功能。为了验证这个猜想,仍需要开展一些关键性的研究。例如构建FMRP敲除细胞系并在其中改变AAK1表达量,观察AAK1调控翻译水平是否完全依赖FMRP;借助核糖体图谱分析AAK1调控哪些蛋白的表达;通过增强型CLIP分析AAK1影响FMRP结合哪些RNA等。

作者贡献声明

吴皓、胡荣贵参与了课题设计;姜贵先负责实验操作、数据整理以及论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

WU Hao and HU Ronggui instructed the research. JIANG Guixian performed the experiments and data analyzing. The manuscript was drafted and revised by JIANG Guixian. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

CONNER S D, SCHMID S L. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis[J]. J Cell Biol, 2002, 156(5): 921-929.

[本文引用: 2]

CONNER S D, SCHRÖTER T, SCHMID S L. AAK1-mediated micro2 phosphorylation is stimulated by assembled clathrin[J]. Traffic, 2003, 4(12): 885-890.

[本文引用: 1]

AGAJANIAN M J, WALKER M P, AXTMAN A D, et al. WNT activates the AAK1 kinase to promote clathrin-mediated endocytosis of LRP6 and establish a negative feedback loop[J]. Cell Rep, 2019, 26(1): 79-93.e8.

[本文引用: 1]

SORENSEN E B, CONNER S D. AAK1 regulates Numb function at an early step in clathrin-mediated endocytosis[J]. Traffic, 2008, 9(10): 1791-1800.

[本文引用: 1]

GUPTA-ROSSI N, ORTICA S, MEAS-YEDID V, et al. The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway[J]. J Biol Chem, 2011, 286(21): 18720-18730.

[本文引用: 1]

SHI B, CONNER S D, LIU J. Dysfunction of endocytic kinase AAK1 in ALS[J]. Int J Mol Sci, 2014, 15(12): 22918-22932.

[本文引用: 1]

NEVEU G, ZIV-AV A, BAROUCH-BENTOV R, et al. AP2-associated protein kinase 1 and cyclin G-associated kinase regulate hepatitis C virus entry and are potential drug targets[J]. J Virol, 2015, 89(8): 4387-4404.

[本文引用: 1]

BEKERMAN E, NEVEU G, SHULLA A, et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects[J]. J Clin Invest, 2017, 127(4): 1338-1352.

[本文引用: 1]

WANG C, WANG J, SHUAI L, et al. The serine/threonine kinase AP2-associated kinase 1 plays an important role in rabies virus entry[J]. Viruses, 2019, 12(1): E45.

[本文引用: 1]

STEBBING J, KRISHNAN V, DE BONO S, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients[J]. EMBO Mol Med, 2020, 12(8): e12697.

[本文引用: 1]

WELLS C, COUÑAGO R M, LIMAS J C, et al. SGC-AAK1-1: a chemical probe targeting AAK1 and BMP2K[J]. ACS Med Chem Lett, 2020, 11(3): 340-345.

[本文引用: 1]

MARTINEZ-GUALDA B, SCHOLS D, DE JONGHE S. A patent review of adaptor associated kinase 1 (AAK1) inhibitors (2013-present)[J]. Expert Opin Ther Pat, 2021, 31(10): 911-936.

[本文引用: 1]

KIRKPATRICK L L, MCILWAIN K A, NELSON D L. Comparative genomic sequence analysis of the FXR gene family: FMR1, FXR1, and FXR2[J]. Genomics, 2001, 78(3): 169-177.

[本文引用: 1]

VERKERK A J, PIERETTI M, SUTCLIFFE J S, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome[J]. Cell, 1991, 65(5): 905-914.

[本文引用: 1]

SHAH S, MOLINARO G, LIU B, et al. FMRP control of ribosome translocation promotes chromatin modifications and alternative splicing of neuronal genes linked to autism[J]. Cell Rep, 2020, 30(13): 4459-4472.e6.

[本文引用: 1]

KORB E, HERRE M, ZUCKER-SCHARFF I, et al. Excess translation of epigenetic regulators contributes to fragile X syndrome and is alleviated by Brd4 inhibition[J]. Cell, 2017, 170(6): 1209-1223.e20.

[本文引用: 1]

PASCIUTO E, BAGNI C. SnapShot: FMRP interacting proteins[J]. Cell, 2014, 159(1): 218-218.e1.

[本文引用: 1]

DARNELL J C, VAN DRIESCHE S J, ZHANG C, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism[J]. Cell, 2011, 146(2): 247-261.

[本文引用: 2]

RICHTER J D, BASSELL G J, KLANN E. Dysregulation and restoration of translational homeostasis in fragile X syndrome[J]. Nat Rev Neurosci, 2015, 16(10): 595-605.

[本文引用: 1]

EDENS B M, VISSERS C, SU J, et al. FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export[J]. Cell Rep, 2019, 28(4): 845-854.e5.

[本文引用: 1]

TANG B, WANG T, WAN H, et al. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome[J]. Proc Natl Acad Sci USA, 2015, 112(34): E4697-E4706.

[本文引用: 1]

SCHMIDT E K, CLAVARINO G, CEPPI M, et al. SUnSET, a nonradioactive method to monitor protein synthesis[J]. Nat Methods, 2009, 6(4): 275-277.

[本文引用: 1]

HENDERSON D M, CONNER S D. A novel AAK1 splice variant functions at multiple steps of the endocytic pathway[J]. Mol Biol Cell, 2007, 18(7): 2698-2706.

[本文引用: 1]

LIAN J, ZHU X, DU J, et al. Extracellular vesicle-transmitted miR-671-5p alleviates lung inflammation and injury by regulating the AAK1/NF-κB axis[J].Mol Ther, 2023, 31(5): 1365-1382.

[本文引用: 1]

SORRELL F J, SZKLARZ M, ABDUL AZEEZ K R, et al. Family-wide structural analysis of human numb-associated protein kinases[J]. Structure, 2016, 24(3): 401-411.

[本文引用: 1]

HARTZ R A, AHUJA V T, NARA S J, et al. Discovery, structure-activity relationships, and in vivo evaluation of novel aryl amides as brain penetrant adaptor protein 2-associated kinase 1 (AAK1) inhibitors for the treatment of neuropathic pain[J]. J Med Chem, 2021, 64(15): 11090-11128.

[本文引用: 1]

XIN X, WANG Y, ZHANG L, et al. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases[J]. Eur J Med Chem, 2023, 248: 115102.

[本文引用: 1]

ASAMITSU S, YABUKI Y, IKENOSHITA S, et al. CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome[J]. Sci Adv, 2021, 7(3): eabd9440.

[本文引用: 1]

HALE C R, SAWICKA K, MORA K, et al. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons[J]. Elife, 2021, 10: e71892.

[本文引用: 1]

MAURIN T, LEBRIGAND K, CASTAGNOLA S, et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein[J]. Nucleic Acids Res, 2018, 46(12): 6344-6355.

BUDDIKA K, XU J, ARIYAPALA I S, et al. I-KCKT allows dissection-free RNA profiling of adult Drosophila intestinal progenitor cells[J]. Development, 2021, 148(1): dev196568.

[本文引用: 1]

MAZROUI R, HUOT M E, TREMBLAY S, et al. Trapping of messenger RNA by fragile X mental retardation protein into cytoplasmic granules induces translation repression[J]. Hum Mol Genet, 2002, 11(24): 3007-3017.

[本文引用: 1]

MONDAY H R, KHAROD S C, YOON Y J, et al. Presynaptic FMRP and local protein synthesis support structural and functional plasticity of glutamatergic axon terminals[J]. Neuron, 2022, 110(16): 2588-2606.e6.

[本文引用: 1]

KUAI L, ONG S E, MADISON J M, et al. AAK1 identified as an inhibitor of neuregulin-1/ErbB4-dependent neurotrophic factor signaling using integrative chemical genomics and proteomics[J]. Chem Biol, 2011, 18(7): 891-906.

[本文引用: 1]

/