上海交通大学学报(医学版), 2023, 43(9): 1131-1144 doi: 10.3969/j.issn.1674-8115.2023.09.007

论著 · 基础研究

间歇性禁食联合产热脂肪活化防治小鼠肥胖作用研究

吴凯敏,1, 麻静,1, 赵旭赟,2

1.上海交通大学医学院附属仁济医院内分泌代谢病科,上海 200127

2.上海交通大学基础医学院生物化学与分子细胞生物学系,上海 200025

Combined effects of intermittent fasting and thermogenic fat activation on the treatment and prevention of obesity in mice

WU Kaimin,1, MA Jing,1, ZHAO Xuyun,2

1.Department of Endocrinology and Metabolism, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

2.Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University College of Basic Medical Sciences, Shanghai 200025, China

通讯作者: 赵旭赟,电子信箱:xuyunzhao@shsmu.edu.cn麻 静,电子信箱:majing3436@163.com

编委: 瞿麟平

收稿日期: 2023-04-06   接受日期: 2023-09-03   网络出版日期: 2023-09-28

基金资助: 上海交通大学医学院“双百人”项目.  20181807

Corresponding authors: ZHAO Xuyun, E-mail:xuyunzhao@shsmu.edu.cnMA Jing, E-mail:majing3436@163.com. #Co-responding authors.

Received: 2023-04-06   Accepted: 2023-09-03   Online: 2023-09-28

作者简介 About authors

吴凯敏(1995—),女,硕士生;电子信箱:kaimin_wu2019@163.com。 E-mail:kaimin_wu2019@163.com

摘要

目的·研究间歇性禁食(intermittent fasting,IF)联合产热脂肪活化对小鼠肥胖的治疗和预防作用。方法·取8周龄雄性C57BL/6J正常小鼠以高脂饲料喂养4个月,构建肥胖小鼠模型作为肥胖治疗实验对象;另取8周龄雄性C57BL/6J正常小鼠作为肥胖预防实验对象。2种实验小鼠均分为对照组、隔日腹腔注射CL316243(β3-肾上腺素能受体激动剂,CL)组、IF组、IF联合隔日腹腔注射CL组。肥胖治疗实验小鼠与肥胖预防实验小鼠分别干预38 d和124 d,干预期间均以高脂饲料喂养。每2 d记录小鼠摄食量和体质量;实验结束后,检测小鼠外周血葡萄糖浓度,收集棕色脂肪组织(brown adipose tissue,BAT)、腹股沟白色脂肪组织(inguinal white adipose tissue,iWAT)、附睾白色脂肪组织(epididymal white adipose tissue,eWAT)和肝脏样本并称取质量,通过苏木精-伊红(H-E)染色观察脂肪组织和肝脏组织形态学的变化,采用实时荧光定量聚合酶链反应(RT-qPCR)分析脂肪组织和肝脏组织的产热基因、炎症基因,以及糖脂代谢相关基因的表达水平。结果·在肥胖治疗实验中,IF联合CL相较于单纯IF,可进一步减轻肥胖小鼠体质量并降低血糖(均P<0.05),减小eWAT和肝脏细胞内的脂滴(均P<0.05),促进eWAT与iWAT中产热基因解偶联蛋白1(uncoupling protein1,Ucp1)和细胞死亡诱导DFFA样效应蛋白α(cell death inducing DFFA like effector α,Cidea)的表达,上调eWAT与iWAT中脂肪酸氧化相关基因过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor α,Ppara)和烯酰辅酶A水合酶(enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase,Ehhadh)的表达(均P<0.05);与对照组相比,IF联合CL还可抑制eWAT和肝脏中炎症相关的基因表达(均P<0.05),促进肝脏糖代谢相关基因表达(均P<0.05),但与单纯IF相比差异无统计学意义。在肥胖预防实验中,IF联合CL相较于单纯IF,可进一步减小eWAT和iWAT细胞内的脂滴,促进eWAT与iWAT中Ucp1Cidea的表达,上调eWAT与iWAT中PparaEhhadh的表达(均P<0.05);与对照组相比,IF联合CL还可抵抗高脂饮食诱导的体质量增长,以及改善血糖(均P<0.05),并抑制肝脏脂肪酸氧化相关基因的表达水平(均P<0.05),但与单纯IF相比差异无统计学意义。结论·在肥胖治疗与预防模型中,与单纯IF相比,IF联合产热脂肪活化均可减少脂肪组织中脂肪沉积,促进白色脂肪中产热基因及脂肪酸氧化基因的表达;但两者对体质量和血糖的联合作用在肥胖治疗模型中优于单纯IF,在预防模型中则无明显优势。

关键词: 间歇性禁食 ; 产热脂肪活化 ; 肥胖 ; 治疗 ; 预防

Abstract

Objective ·To investigate the effects of intermittent fasting (IF) combined with thermogenic fat activation on the treatment and prevention of obesity in mice. Methods ·Male C57BL/6J mice aged 8 weeks were fed by high-fat diet for 4 months and then used as obesity treatment models. The prevention model was conducted on male and 8-week-old C57BL/6J mice. High-fat diet-induced obese mice and normal mice were respectively assigned into four groups: control group, alternate-day intraperitoneal CL316243 (β3-adrenergic receptor agonist,CL) injection group, IF group, and IF combined with alternate-day intraperitoneal CL injection group. Obesity treatment experimental mice and obesity prevention experimental mice were intervened for 38 d and 124 d, respectively, and they were all fed with high-fat diet during the intervention. The food intake and body weight were measured every two days. The blood glucose was measured at the end of the experiments. The brown adipose tissues (BAT), inguinal white adipose tissues (iWAT), epididymal white adipose tissues (eWAT), and livers were collected and weighed after the mice were sacrificed. The effect of IF combined with CL on morphologic changes was investigated by hematoxylin-eosin (H-E) staining. The expression levels of the genes related to thermogenesis, inflammation, and glucose and lipid metabolisms in the livers and adipose tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Results ·In the treatment model, compared with IF alone, IF combined with CL further reduced the body weight and blood glucose of obese mice (P<0.05), reduced the lipid droplet size in the eWAT cells and the liver cells (P<0.05), promoted the expression levels of the thermogenic genes uncoupling protein 1 (Ucp1) and cell death inducing DFFA like effector α (Cidea) in the eWAT and the iWAT, and up-regulated the expressions of the fatty acid oxidation related genes in the eWAT and the iWAT, i.e., peroxisome proliferator-activated receptor α (Ppara) and enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (Ehhadh) (P<0.05). IF combined with CL also inhibited the expressions of inflammation-related genes in the eWAT and the liver (P<0.05) and promoted the expressions of glucose metabolism-related genes in the liver compared with the control group (P<0.05), but there were no significant differences compared with IF alone. In the prevention model, compared with IF alone, IF combined with CL further reduced the lipid droplet size in the eWAT cells and the iWAT cells, promoted the expression levels of Ucp1 and Cidea in the eWAT and the iWAT, and up-regulated the expression of Ppara and Ehhadh in the eWAT and the iWAT (P<0.05). IF combined with CL also resisted the weight gain induced by high-fat diet, improved blood glucose (P<0.05), and inhibited the expression levels of fatty acid oxidation-related genes in the liver compared with the control group (P<0.05), but there were no significant differences compared with IF alone. Conclusion ·Both in the obesity treatment and prevention models, IF combined with thermogenic fat activation can reduce lipidosis in the adipose tissue and promote the expression of thermogenic genes and fatty acid oxidation genes in the white adipose tissue compared with IF alone; however, the combined effects of them on body weight and blood glucose are superior to IF in the obesity treatment model, but not in the prevention model.

Keywords: intermittent fasting ; thermogenic fat activation ; obesity ; treatment ; prevention

PDF (5768KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴凯敏, 麻静, 赵旭赟. 间歇性禁食联合产热脂肪活化防治小鼠肥胖作用研究. 上海交通大学学报(医学版)[J], 2023, 43(9): 1131-1144 doi:10.3969/j.issn.1674-8115.2023.09.007

WU Kaimin, MA Jing, ZHAO Xuyun. Combined effects of intermittent fasting and thermogenic fat activation on the treatment and prevention of obesity in mice. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(9): 1131-1144 doi:10.3969/j.issn.1674-8115.2023.09.007

肥胖症(obesity)是以体内脂肪过度蓄积为特征的慢性全身性代谢性疾病,由遗传、环境、炎症、内分泌调节异常等多种复杂因素相互作用所致。肥胖已成为当下亟待解决的公共卫生危机。根据2020年《中国居民营养与慢性病状况报告》,中国超重和肥胖发病率和增长速度居世界首位,是超重和肥胖人口最多的国家,约有50%成人超重和肥胖。因此,寻求科学防治肥胖症的方法对中国人群尤为迫切。

棕色脂肪(brown adipose tissue,BAT)细胞与米色脂肪细胞统称为产热脂肪细胞,是哺乳动物体内具有产热特性的脂肪细胞,具有多房脂滴的形态特征,电子显微镜下可见丰富的线粒体,在线粒体内膜上高表达解偶联蛋白1(uncoupling protein1,UCP1)1-2。寒冷或β-肾上腺素能受体(β-adrenergic receptor,β-AR)激动剂可促进脂肪分解,以及上调Ucp1等产热基因的表达水平,长链脂肪酸与UCP1结合可提高线粒体内膜对质子的导电性,消耗质子梯度,使得氧化磷酸化与三磷酸腺苷(adenosine triphosphate,ATP)合成解偶联,将底物氧化所产生的能量以热能形式释放,从而维持机体体温,促进能量消耗3-4。大量的啮齿类动物研究和临床研究证实,β3-肾上腺素能受体激动剂激活棕色和米色脂肪能够减重、减少体脂5-6,改善胰岛素敏感性与胰腺β细胞功能7,改善游离脂肪酸与炎症水平5-6,升高外周血中高密度脂蛋白与载脂蛋白A1水平、总胆汁酸水平8。因此,棕色脂肪和米色脂肪活化是治疗肥胖症、非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)等代谢性疾病的新途径9

减少热量摄入与促进能量消耗是预防与治疗肥胖症的主要策略。间歇性禁食(intermittent fasting,IF)是摄食与禁食规律交替的膳食模式,其包括限时禁食(time-restricted feeding,TRF)、5∶2禁食(5∶2 diets)、隔日禁食(alternate-day fasting,ADF)3种形式。临床试验10-11证实,通过8~12周的间歇性禁食,肥胖患者的体质量可较基线减轻4%~8%。间歇性禁食还可升高外周血脂联素水平、降低瘦素水平12-13,改善血糖与胰岛素水平,改善血压和血脂水平14-15。间歇性禁食带来的不仅是摄食量减少16-17,能量消耗增加亦在其中发挥了重要的作用。间歇性禁食实现了从肝源性葡萄糖到脂肪细胞源性酮体的代谢底物转换,通过降低合成代谢、增强应激抵抗力、促进线粒体生物合成、改善糖脂代谢过程、影响自噬、抑制炎症、增强DNA修复和促进细胞存活等机制,发挥改善心血管代谢性疾病的作用18。已有的研究表明,间歇性禁食能够促进腹股沟白色脂肪组织(inguinal white adipose tissue,iWAT)和附睾白色脂肪组织(epididymal white adipose tissue,eWAT)中产热基因Ucp1表达19,还能增加iWAT中细胞死亡诱导DFFA样效应蛋白α(cell death inducing DFFA like effector α,Cidea)和血管内皮生长因子(vascular endothelial growth factor,Vegf)表达,促进能量消耗20。此外,间歇性禁食还可通过影响肠道菌群丰度与代谢物水平,促进白色脂肪米色化并维持能量稳态21。最新的研究证据22提示,符合生物节律的间歇性禁食可促进脂肪细胞的无效肌酸循环,增加机体能量消耗,抵抗高脂饮食诱导的肥胖进展,但其未排除UCP1在间歇性禁食中的作用。考虑到UCP1主要在棕色脂肪和米色脂肪中优势表达,且棕色和米色脂肪活化时能促进外周血中葡萄糖与脂肪酸清除23-24,我们假设UCP1在间歇性禁食中发挥关键作用,若缺失了UCP1的作用,间歇性禁食的减重效应将受损,而通过β3-肾上腺素能受体激动剂激活棕色和米色脂肪,可促进能量以UCP1依赖的方式发生非颤抖性产热,也许能放大间歇性禁食减重和改善代谢的作用。本研究分别在高脂饮食诱导肥胖小鼠与非肥胖小鼠中进行间歇性禁食实验,并隔日给予β3-肾上腺素能受体激动剂CL316243活化产热脂肪,观察间歇性禁食联合产热脂肪活化对高脂饮食诱导的肥胖、慢性炎症,以及机体糖脂代谢的影响,探索间歇性禁食联合治疗能否进一步缓解肥胖的发生发展,明晰UCP1在间歇性禁食中的作用,为间歇性禁食联合β3-肾上腺素能受体激动剂在临床中的运用提供理论支持。

1 材料和方法

1.1 实验动物

8周龄雄性C57BL/6J小鼠购自上海灵畅生物科技有限公司,实验动物生产许可证号为SCXK(沪)2018-0003。小鼠饲养于上海交通大学医学院实验动物科学部SPF级实验室,环境温度(25±1)℃,湿度50%,并保证12 h光照/12 h黑暗交替。小鼠根据实验设计进行隔日禁食或者自由摄取食物,所有小鼠均可自由饮水。实验动物使用许可证号为SYXK(沪)2018-0027。

1.2 主要试剂及仪器

60%高脂饲料(D12492)购自美国Research Diets公司,β3-肾上腺素能受体激动剂CL316243(C5976)购自美国Sigma公司,TRIzol试剂(R401-01)、反转录试剂盒(R222-01)、实时定量PCR试剂盒(Q711-02)购自南京诺唯赞生物科技股份有限公司,三氯甲烷(10006818)、异丙醇(80109228)、75%乙醇(80176961)购自国药集团化学试剂有限公司,DEPC处理水(B501005-0500)购自生工生物工程(上海)公司,实时定量PCR(RT-qPCR)引物由生工生物工程(上海)公司设计与合成。

全自动样品冷冻研磨仪(F6/10)购自上海净信实业发展有限公司,台式冷冻通用离心机(SL16R)、酶标仪(Multiskan Sky)、PCR热循环仪(2720)购自美国Thermo Fisher Scientific公司,荧光定量PCR仪(LightCycler®480 Ⅱ)购自瑞士Roche公司,荧光倒置显微镜(Ts2-FL)购自日本Nikon公司。

1.3 实验设计与动物分组

肥胖治疗实验:予8周龄雄性C57BL/6J小鼠60%高脂饲料喂养,小鼠可自由摄取食物,饲养4个月构建饮食诱导的肥胖小鼠模型,后续实验期间仍以60%高脂饲料喂养。待肥胖小鼠模型构建成功后随机将小鼠分为4组,分别为对照组1(Ctrl1组)、隔日腹腔注射CL316243组1(CL1组)、间歇性禁食组1(IF1组)、间歇性禁食联合隔日腹腔注射CL316243组1(IF+CL1组),每组4只小鼠。其中,间歇性禁食采取隔日禁食的策略:一日自由饮食,一日仅提供饮水,间隔进行,持续38 d。CL1组与IF+CL1组小鼠隔日(IF+CL1组的自由饮食日)予β3-肾上腺素能受体激动剂CL316243腹腔注射,剂量0.5 mg/kg,共注射19次。实验期间每2 d记录小鼠摄食量与体质量变化,计算小鼠38 d内的累积摄食量。

肥胖预防实验:随机将8周龄雄性C57BL/6J小鼠分为4组,分别为对照组2(Ctrl2组)、隔日腹腔注射CL316243组2(CL2组)、间歇性禁食组2(IF2组)、间歇性禁食联合隔日腹腔注射CL316243组2(IF+CL2组),每组5只小鼠,均以60%高脂饲料喂养。4组小鼠禁食策略与药物干预方法与治疗实验一致,干预124 d。实验期间每2 d记录小鼠摄食量与体质量变化,计算小鼠124 d内的累积摄食量。

实验结束后,取小鼠尾尖静脉血于血糖试纸上,用血糖仪检测小鼠外周血葡萄糖浓度;以CO2窒息法处死小鼠,取小鼠肝脏组织、BAT、iWAT与eWAT用于后续分析。

1.4 RNA提取与RT-qPCR分析

分别取肝脏、BAT、iWAT与eWAT加入适量TRIzol试剂,并于冷冻研磨仪中破碎组织,根据TRIzol试剂说明书提取RNA,用DEPC处理水溶解RNA,分光光度计测量RNA浓度,琼脂糖凝胶电泳检测RNA。根据反转录试剂盒说明书将RNA反转录成cDNA,根据实时定量PCR试剂盒配制10 μL反应体系:2 μL cDNA模板、0.2 μL上游引物(10 μmol/L)、0.2 μL下游引物(10 μmol/L)、5 μL 2×ChamQ SYBR qPCR Master Mix、2.6 μL双蒸水。反应程序:预变性95 ℃ 30 s;95 ℃ 10 s,60 ℃ 30 s,共40个循环。数据以核糖体蛋白侧茎亚基P0(ribosomal protein lateral stalk subunit P0,Rplp0)为内参,以2-ΔΔCT计算各基因的mRNA相对表达水平。引物序列见表1

表1   RT-qPCR引物序列

Tab 1  Primer sequences for RT-qPCR

GeneForward sequence (5′→3′)Reverse sequence (5′→3′)
Rplp0GAAACTGCTGCCTCACATCCGGCTGGCACAGTGACCTCACACG
Ccl2AGGTCCCTGTCATGCTTCTGTCTGGACCCATTCCTTCTTG
Ccl5TGCCCACGTCAAGGAGTATTTTTCTCTGGGTTGGCACACACT
Il-1bGAAATGCCACCTTTTGACAGTGTGGATGCTCTCATCAGGACAG
Il-6AGTTGCCTTCTTGGGACTGATCCACGATTTCCCAGAGAAC
Ucp1GGCATTCAGAGGCAAATCAGCTCAATGAACACTGCCACACCTC
CideaGCAGCCTGCAGGAACTTATCAGCGATCATGAAATGCGTGTTGTCC
leptinAGCAGTGCCTATCCAGAATGCCAGAGTCTGGTCCATCT
adiponectinCAACTGAAGAGCTAGCTCCTTAGGACCAAGAAGACCTG
PparaAGAGCCCCATCTGTCCTCTCACTGGTAGTCTGCAAAACCAAA
PpargCTGACCCAATGGTTGCTGATGGTGGAGATGCAGGTTCTAC
EhhadhCAGATGAAGCACTCAAGCTTGACCTTGGCAATGGCTTCTGCA
Hmgcs2GACATCAACTCCCTGTGCCTGGATGTCAGTGTTGCCTGAATC
CidecTCGACCTGTACAAGCTGAACCCTAGGTGCCAAGCAGCATGTGACC
Srebp1cGATGTGCGAACTGGACACAGCATAGGGGGCGTCAAACAG
FasnGGAGGTGGTGATAGCCGGTATTGGGTAATCCATAGAGCCCAG
Scd1GCTGGAGTACGTCTGGAGGAATCCCGAAGAGGCAGGTGTAG
Dgat2GCGCTACTTCCGAGACTACTTGGGCCTTATGCCAGGAAACT
GckAGGAGGCCAGTGTAAAGATGTCTCCCAGGTCTAAGGAGAGAAA
PfklTCCGCACCTACAACATCCACGGCTGGGATGACACACATGA
Hk2TGATCGCCTGCTTATTCACGGAACCGCCTAGAAATCTCCAGA
PkmGCCGCCTGGACATTGACTCCCATGAGAGAAATTCAGCCGAG
Glut1TCAAACATGGAACCACCGCTAAAGAGGCCGACAGAGAAGGAA
Glut4GTGACTGGAACACTGGTCCTACCAGCCACGTTGCATTGTAG
PepckCATATGCTGATCCTGGGCATAACCAAACTTCATCCAGGCAATGTC
G6PaseACACCGACTACTACAGCAACAGCCTCGAAAGATAGCAAGAGTAG

Note:Ccl2—C-C motif chemokine ligand 2; Il-1b—interleukin 1β; Ppara—peroxisome proliferator-activated receptor α; Pparg—peroxisome proliferator-activated receptor γ; Ehhadh—enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase; Hmgcs2—3-hydroxy-3-methylglutaryl-CoA synthase 2; Cidec—cell death-inducing DFFA-like effector c; Srebp1c—sterol regulatory element binding transcription factor 1c; Fasn—fatty acid synthase; Scd1—stearoyl-CoA desaturase 1; Dgat2—diacylglycerol O-acyltransferase 2; Gck—glucokinase; Pfkl—phosphofructokinase, liver type; Hk2—hexokinase 2; Pkm—pyruvate kinase; Glut1—glucose transporter member 1; Pepck—phosphoenolpyruvate carboxykinase; G6Pase—glucose-6-phosphatase.

新窗口打开| 下载CSV


1.5 肝脏与脂肪组织苏木精-伊红染色

取新鲜肝脏、脂肪组织浸没于通用型组织固定液(中性)过夜,并交由赛维尔公司进行组织石蜡包埋、切片与苏木精-伊红(hematoxylin-eosin,H-E)染色。在光学显微镜下观察肝脏和脂肪组织结构,于不同倍镜视野下观察细胞形态、脂滴大小等,并拍照。运用Image J软件测量脂肪细胞与肝细胞直径。

1.6 统计学分析

数据采用GraphPad Prism 9.0软件进行分析。定量资料以x±sx 表示,组间比较采用成组t检验或单因素方差分析。所有统计检验采用双侧检验,P<0.05表示差异具有统计学意义。

2 结果

2.1 肥胖治疗实验结果

2.1.1 对体质量和血糖的影响

为探究间歇性禁食联合产热脂肪活化对肥胖的治疗作用,我们采用隔日禁食单独或联合CL316243腹腔注射处理肥胖小鼠(图1A)。在高脂饮食饲养条件下,与Ctrl1组相比,CL1组的摄食量无明显变化,IF1组与IF+CL1组摄食量显著减少(均P<0.05),说明间歇性禁食能够有效减少高脂饮食条件下小鼠的摄食量(图1B)。经过38 d干预后,IF1组与IF+CL1组小鼠的体质量较Ctrl1组显著下降(均P<0.05);与IF1组相比,IF+CL1组肥胖小鼠体质量下降更加显著(P<0.05,图1C)。为了解间歇性禁食联合产热脂肪活化对血糖的改善作用,我们测量了小鼠的随机血糖,结果显示:与Ctrl1组相比,CL1组、IF1组与IF+CL1组均能显著降低肥胖小鼠血糖(均P<0.05);与IF1组相比,IF+CL1组随机血糖下降更加显著(P<0.05,图1D)。

图1

图1   间歇性禁食联合产热脂肪活化对肥胖小鼠体质量及血糖的影响

Note: A. The schematic outline of the obesity treatment experiment. B. Accumulative food intake in four groups during intervention (38 d). C. Body weight in four groups during intervention. D. Blood glucose in four groups at the end of experiment. P=0.001, P=0.002, P=0.027, P=0.005, P=0.019, compared with the Ctrl1 group; P=0.002, compared with the CL1 group; P=0.049, P=0.010, compared with the IF1 group.

Fig 1   Effect of intermittent fasting combined with thermogenic fat activation on the body weight and blood glucose of obese mice


2.1.2 对脂肪和肝脏组织脂肪沉积的影响

为明确间歇性禁食联合产热脂肪活化对肝脏和脂肪组织质量、组织形态的影响,对脂肪和肝脏质量进行分析,结果显示:IF+CL1组的BAT和肝脏质量占体质量的百分比与Ctrl1组相比无显著差异,但iWAT与eWAT质量百分比显著下降(图2A)。对脂肪组织与肝脏组织切片进行H-E染色,结果显示:IF+CL1组小鼠eWAT和iWAT脂肪细胞脂滴明显减小,eWAT中花冠样结构(浸润的炎症细胞)减少,高脂饮食诱导的棕色脂肪脂滴沉积减少,肝脏中脂滴浸润减少(图2B)。进一步对脂肪细胞与肝脏细胞直径进行分析,与Ctrl1组相比,CL1组、IF1组、IF+CL1组脂肪细胞、肝脏细胞直径均减小,其中IF+CL1组脂肪细胞与肝脏细胞直径较CL1组也显著减小(图2C)。

图2

图2   间歇性禁食联合产热脂肪活化对肥胖小鼠脂肪和肝脏组织脂肪沉积的影响

Note: A. The relative weight of eWAT, iWAT, BAT, and liver in the four groups. B. H-E staining of eWAT, iWAT, BAT, and liver sections in the four groups (×100). Scale bar=100 μm. C. The average diameters of the cells in eWAT, iWAT, BAT, and liver sections in the four groups. P=0.009, P=0.025, P=0.012, P=0.000, P=0.002, P=0.001, compared with the Ctrl1 group; P=0.000, P=0.020, P=0.010, compared with the CL1 group; P=0.000, compared with the IF1 group.

Fig 2   Effect of intermittent fasting combined with thermogenic fat activation on fat deposition in the fat and liver tissues of obese mice


2.1.3 对脂肪和肝脏组织炎症的影响

为进一步明确间歇性禁食联合产热脂肪活化对肥胖相关的慢性炎症的影响,运用RT-qPCR检测eWAT与肝脏组织的炎症相关基因,结果显示:在eWAT中,CL1Ccl5 mRNA表达水平较Ctrl1组下调,IF+CL1Ccl2Ccl5Il-1bIl-6 mRNA表达水平较Ctrl1组均下调(均P<0.05,图3A);在肝脏组织中,IF1组、IF+CL1Ccl2Ccl5Il-1bIl-6 mRNA表达水平均下调(均P<0.05,图3B),但IF+CL1组与IF1组之间差异无统计学意义。

图3

图3   间歇性禁食联合产热脂肪活化对肥胖小鼠脂肪和肝脏组织炎症的影响

Note: A. Inflammation genes in the eWAT analyzed by RT-qPCR. B. Inflammation genes in the liver analyzed by RT-qPCR. P=0.014, P=0.017, P=0.002, P=0.036, P=0.031. P=0.027, P=0.019, P=0.001, P=0.000, P=0.013, P=0.011, P=0.018, compared with the Ctrl1 group.

Fig 3   Effect of intermittent fasting combined with thermogenic fat activation on inflammation in the fat and liver tissues of obese mice


2.1.4 对白色脂肪组织代谢的影响

为明确间歇性禁食联合产热脂肪活化对白色脂肪组织代谢的影响,我们采用RT-qPCR检测了eWAT与iWAT的产热基因及脂肪酸代谢相关基因,结果显示:CL1组eWAT与iWAT的产热基因Ucp1Cidea mRNA水平较Ctrl1组显著上调(均P<0.05);与IF1组相比,IF+CL1组产热基因Ucp1Cidea mRNA水平上调(均P<0.05,图4A、C)。关于脂肪酸氧化相关基因,IF+CL1组促进eWAT中脂联素(adiponectin)基因表达上调(P<0.05);与Ctrl1组相比,CL1组、IF1组、IF+CL1组eWAT的PparaEhhadh表达均上调(均P<0.05,图4B)。iWAT中仅有IF+CL1组的PparaEhhadh mRNA表达水平上调,显著高于其他3组(均P<0.05,图4D)。

图4

图4   间歇性禁食联合产热脂肪活化对肥胖小鼠白色脂肪组织代谢的影响

Note: A. The expression of thermogenic genes in the eWAT analyzed by RT-qPCR. B. The expression of fatty acid oxidation genes in the eWAT analyzed by RT-qPCR. C. The expression of thermogenic genes in the iWAT analyzed by RT-qPCR. D. The expression of fatty acid oxidation genes in the iWAT analyzed by RT-qPCR. P=0.019, P=0.008, P=0.017, P=0.001, P=0.025, P=0.000, P=0.042, P=0.016, P=0.007, P=0.036, P=0.031, P=0.013, P=0.046, P=0.037, 22P=0.002, compared with the Ctrl1 group. P=0.004, P=0.037, 24P=0.003, compared with the CL1 group. P=0.010, P=0.002, P=0.003, P=0.049, 21P=0.037, 23P=0.000, 25P=0.001, compared with the IF1 group.

Fig 4   Effect of intermittent fasting combined with thermogenic fat activation on metabolism of white fat tissues in obese mice


2.1.5 对肝脏糖脂代谢的影响

为探讨间歇性禁食联合产热脂肪活化对肝脏糖脂代谢的影响,我们采用RT-qPCR检测了肝脏糖酵解、糖异生、脂肪酸合成与氧化等相关基因,结果显示:与Ctrl1组相比,IF+CL1组脂肪酸氧化相关基因Ehhadh mRNA水平、脂肪酸合成相关基因Scd1 mRNA水平显著上调(图5A),同时糖异生通路中G6PasePepck的表达上调,糖酵解相关基因PfklGckPkm与葡萄糖转运蛋白Glut1Glut4 mRNA水平显著上调,但与CL1组和IF1组相比联合效应并不明显(图5B)。

图5

图5   间歇性禁食联合产热脂肪活化对肥胖小鼠肝脏组织糖脂代谢的影响

Note: A. The expression of fatty acid metabolism genes in the liver analyzed by RT-qPCR. B. The expression of gluconeogenesis and glycolysis genes in the liver analyzed by RT-qPCR. P=0.008, P=0.006, P=0.037, P=0.013. P=0.024, P=0.002, P=0.001, P=0.000, P=0.020, P=0.012, P=0.036, P=0.018, P=0.038, compared with the Ctrl1 group.

Fig 5   Effect of intermittent fasting combined with thermogenic fat activation on glucose and lipid metabolism in the liver tissue of obese mice


2.2 肥胖预防实验结果

2.2.1 对体质量和血糖的影响

为研究间歇性禁食联合产热脂肪活化对肥胖的预防作用,我们采用隔日禁食单独或联合CL316243腹腔注射处理正常体质量小鼠(图6A),同时进行高脂饲料喂食,结果显示:与Ctrl2组相比,CL2组小鼠摄食量有升高的趋势,但差异无统计学意义(P>0.05),IF2组和IF+CL2组的124 d累积摄食量与Ctrl2组差异无统计学意义(图6B)。与Ctrl2组相比,CL2组、IF2组、IF+CL2组小鼠的体质量增长被抑制,且IF2组、IF+CL2组体质量较CL2组更低,差异均有统计学意义(均P<0.05,图6C)。在血糖方面,CL2组、IF2组与Ctrl2组小鼠血糖无明显差异,仅IF+CL2组小鼠血糖显著低于Ctrl2组(P<0.05,图6D)。

图6

图6   间歇性禁食联合产热脂肪活化对高脂饮食引起的肥胖及血糖升高的预防作用

Note: A. The schematic outline of the obesity prevention experiment. B. Accumulative food intake in four groups during intervention (124 d). C. Body weight in four groups during intervention. D. Blood glucose in four groups at the end of experiment. P=0.015, P=0.038, compared with the Ctrl2 group; P=0.023, P=0.045, compared with the CL2 group.

Fig 6   Preventive effect of intermittent fasting combined with thermogenic fat activation on high-fat diet-induced obesity and hyperglycemia


2.2.2 对脂肪和肝脏组织脂肪沉积的影响

脂肪组织和肝脏组织称重结果显示:与Ctrl2组相比,CL2组、IF2组、IF+CL2组BAT、iWAT和eWAT质量占体质量的百分比显著下降(均P<0.05),但CL2组和IF+CL2组肝脏质量占体质量的百分比较Ctrl2组显著上升(均P<0.05,图7A)。进一步对脂肪组织和肝脏组织切片进行H-E染色,结果显示:CL2组、IF2组、IF+CL2组的eWAT和iWAT脂肪细胞脂滴沉积减少;CL2组、IF2组、IF+CL2组eWAT脂肪细胞间质花冠样结构显著减少;IF+CL2组的小鼠iWAT与BAT中的多房脂滴数量更多,肝脏脂滴显著减少(图7B)。脂肪细胞与肝细胞直径分析结果显示:CL2组、IF2组、IF+CL2组的脂肪细胞和肝细胞直径较Ctrl2组均减小,且IF+CL2组脂肪细胞直径较CL2组进一步减小(均P<0.05,图7C)。

图7

图7   间歇性禁食联合产热脂肪活化对高脂饮食诱导的脂肪和肝脏组织脂肪沉积的预防作用

Note: A. The relative weight of eWAT, iWAT, BAT, and liver in the four groups. B. H-E staining of eWAT, iWAT, BAT and liver sections in the four groups (×100). Scale bar=100 μm. The arrow indicates the crown-like structure. C. The average diameters of the cells in eWAT, iWAT, BAT, and liver sections in the four groups. P=0.000, P=0.001, P=0.039, P=0.009, P=0.003, P=0.016, P=0.011, P=0.008, P=0.031, compared with the Ctrl2 group; P=0.001, P=0.016, compared with the IF2 group; P=0.000, P=0.005, compared with the CL2 group.

Fig 7   Preventive effect of intermittent fasting combined with thermogenic fat activation on high-fat diet-induced fat deposition in the fat and liver tissues


2.2.3 对脂肪和肝脏组织炎症的影响

为探究间歇性禁食联合产热脂肪活化对高脂饮食诱导的慢性炎症的改善作用,我们检测了脂肪组织与肝脏组织中的炎症相关基因,结果显示:在eWAT中,CL2Ccl2Il-6 mRNA表达水平较Ctrl2组显著降低(均P<0.05),IF+CL2组仅Ccl2 mRNA表达水平降低(P<0.05),Ccl5Il-1bIl-6 mRNA表达水平都呈现出下降的趋势,但差异无统计学意义(均P>0.05,图8A);在肝脏中,IF2Ccl2Il-1b mRNA表达水平较Ctrl2组显著降低(均P<0.05,图8B)。

图8

图8   间歇性禁食联合产热脂肪活化对高脂饮食诱导的脂肪和肝脏组织炎症的预防作用

Note: A. Inflammation genes in the eWAT analyzed by RT-qPCR. B. Inflammation genes in the liver analyzed by RT-qPCR. P=0.024, P=0.028, P=0.010, P=0.040, P=0.039, compared with the Ctrl2 group.

Fig 8   Preventive effect of intermittent fasting combined with thermogenic fat activation on high-fat diet-induced inflammation in the fat and liver tissues


2.2.4 对白色脂肪组织代谢的影响

为探讨间歇性禁食联合产热脂肪活化对高脂饮食小鼠白色脂肪组织功能的影响,我们采用RT-qPCR检测了eWAT与iWAT的产热基因与脂肪酸代谢相关基因(图9)。eWAT的检测结果显示:与Ctrl2组相比,IF2组产热基因Ucp1Cidea mRNA表达水平无明显差异,而CL2组和IF+CL2组这2种基因表达水平显著升高(均P<0.05),且IF+CL2Ucp1 mRNA表达水平较IF2组、CL2组显著升高(均P<0.05,图9A);与Ctrl2组相比,IF2组、CL2组和IF+CL2组adiponectin、PparaEhhadh等脂肪酸代谢相关基因的mRNA水平均显著上调(均P<0.05),且IF+CL2组较IF2组的PparaEhhadh表达水平更高(均P<0.05,图9B)。在iWAT中,IF2组仅Cidea mRNA水平较Ctrl2组升高(P<0.05),而CL2组和IF+CL2Ucp1Cidea mRNA表达水平均显著升高(均P<0.05),其中IF+CL2组2种基因的表达水平更高,但差异没有统计学意义(均P>0.05,图9C)。进一步检测iWAT中脂肪酸代谢相关基因,结果表明:与Ctrl2组和IF2组相比,IF+CL2PparaEhhadh表达均上调(均P<0.05,图9D)。

图9

图9   间歇性禁食联合产热脂肪活化对高脂饮食小鼠白色脂肪组织代谢的影响

Note: A. The expression of thermogenic genes in the eWAT analyzed by RT-qPCR. B. The expression of fatty acid oxidation genes in the eWAT analyzed by RT-qPCR. C. The expression of thermogenic genes in the iWAT analyzed by RT-qPCR. D. The expression of fatty acid oxidation genes in the iWAT analyzed by RT-qPCR. P=0.000, P=0.003, P=0.019, P=0.001, P=0.002, P=0.006, P=0.004, P=0.014, P=0.008, P=0.007, P=0.029, P=0.021, P=0.024, 21P=0.023, 22P=0.042, compared with the Ctrl2 group; P=0.001, P=0.000, P=0.006, P=0.020, P=0.041, P=0.005, 23P=0.010, 24P=0.003, compared with the IF2 group; P=0.012, compared with the CL2 group.

Fig 9   Effect of intermittent fasting combined with thermogenic fat activation on metabolism of white fat tissues in mice on a high-fat diet


2.2.5 对肝脏糖脂代谢的影响

为探究间歇性禁食联合产热脂肪活化对高脂饮食小鼠肝脏糖脂代谢的影响,我们采用RT-qPCR的方法检测肝脏脂代谢与糖代谢相关基因,结果显示:与Ctrl2组相比,CL2组脂肪酸代谢相关基因FasnScd1Dgat2Fgf21 mRNA表达水平显著下调,IF2FasnDgat2SrebplcPparaFgf21Pparg表达水平显著下调,IF+CL2组肝脏Srebp1cFasnScd1Dgat2PparaFgf21Pparg mRNA水平等均显著下调(均P<0.05,图10A)。在糖代谢方面,CL2组、IF2组、IF+CL2组均能抑制糖异生基因Gck表达(均P<0.05,图10B)。

图10

图10   间歇性禁食联合产热脂肪活化对高脂饮食小鼠肝脏组织糖脂代谢的影响

Note: A. The expression of fatty acid metabolism genes in the liver analyzed by RT-qPCR. B. The expression of gluconeogenesis and glycolysis genes in the liver analyzed by RT-qPCR. P=0.025, P=0.010, P=0.001, P=0.002, P=0.000, P=0.026, P=0.040, P=0.021, P=0.011, P=0.020, P=0.005, P=0.031, P=0.018, P=0.017, P=0.008, P=0.022, compared with the Ctrl2 group.

Fig 10   Effect of intermittent fasting combined with thermogenic fat activation on glucose and lipid metabolism in the liver tissue of mice on a high-fat diet


3 讨论

肥胖症是当下危害个体健康与制约社会发展的公共卫生问题,流行病学研究显示超重与肥胖人数在多个年龄段呈现快速增长的趋势,寻求科学有效的预防与治疗措施、减缓肥胖症患病率的增长是解决肥胖症问题的重心。生活方式的干预贯穿于整个肥胖症健康管理过程,是预防与治疗肥胖症的基石。间歇性禁食是由禁食衍生出的膳食模式,通过周期性的禁食与摄食以达到减少热量摄入的目的,其安全性及有效性在多项临床试验中已得到证实,且亦有临床试验通过间歇性禁食联合治疗观察其对代谢性疾病的改善作用。一项以超重和肥胖患者为研究对象的临床试验14显示,间歇性禁食联合热量限制饮食在有效减轻体质量、减少体脂的同时,能够有效改善血糖、胰岛素水平、血脂和血压,但间歇性禁食联合热量限制饮食与单纯热量限制饮食的减重与代谢指标改善效果并无明显差异,提示限制热量在间歇性禁食减重效果中的重要性。另一项在NAFLD患者中开展的临床试验25显示,间歇性禁食联合有氧运动能有效减轻体质量与减少体脂,显著降低外周血谷丙转氨酶水平,提高胰岛素敏感性;但是间歇性禁食联合有氧运动在改善外周血谷草转氨酶水平、糖化血红蛋白水平以及肝纤维化评分方面与单纯间歇性禁食组、单纯有氧运动组之间并无明显差异,提示间歇性禁食联合有氧运动虽可改善NAFLD患者肝脏脂肪变性程度,但未能比单纯间歇性禁食获得更多的代谢效益。因此,探索更高效的间歇性禁食联合疗法也是防治肥胖症的新思路。

与已发表的啮齿类动物研究相似,我们的实验结果也证实了间歇性禁食在肥胖症治疗中的作用。与我们的假设相符的是,间歇性禁食联合产热脂肪活化比单纯间歇性禁食取得更好的减肥效果,间歇性禁食联合产热脂肪活化能有效减轻肥胖小鼠体质量、降低体脂含量,改善血糖水平。此外,间歇性禁食联合产热脂肪活化能降低肝脏和内脏脂肪组织炎症水平,并协同促进脂肪组织中产热基因上调与脂肪酸氧化过程,在一定程度上促进肝脏糖代谢过程,维持糖代谢稳态。而在非肥胖小鼠间歇性禁食实验中发现,间歇性禁食联合产热脂肪活化也能抵抗高脂饮食诱导的体质量增长并改善血糖,缓解脂肪组织炎症水平,促进脂肪组织脂肪酸氧化利用,同时抑制肝脏脂质合成过程,减轻脂肪组织和肝脏中的脂肪沉积,但其获得的代谢效益与单纯间歇性禁食效果相当。这提示我们可在肥胖治疗中通过采用间歇性禁食与激活产热脂肪相结合的方式,取得更好的减肥效果;而单纯间歇性禁食即可在肥胖预防中起明显作用,可在肥胖预防领域推广运用。

间歇性禁食联合产热脂肪活化改善小鼠体质量与糖脂代谢过程的具体作用机制尚不明确,我们在肥胖治疗与预防模型中均能观察到间歇性禁食联合产热脂肪活化时产热基因Ucp1表达水平更高,提示Ucp1在联合疗法中的重要作用,但仍需要通过构建Ucp1敲除小鼠模型进一步验证;此外,我们考虑间歇性禁食联合产热脂肪活化可能通过降低血胰岛素水平,促进脂肪组织与肝脏组织的脂肪酸氧化过程,减少脂肪酸合成,进而减轻脂毒性,缓解机体炎症水平以实现其改善机体代谢的作用,但具体机制仍需进一步实验验证。既往研究7表明,在肥胖人群中运用β3-肾上腺素能受体激动剂米拉贝隆可通过白色脂肪米色化过程间接改善胰腺β细胞功能。我们在肥胖治疗与预防模型中观察到间歇性禁食联合产热脂肪活化对肥胖小鼠与非肥胖小鼠的血糖改善作用显著,一方面源于棕色脂肪活化与白色脂肪米色化促进外周血葡萄糖清除,另一方面源于间歇性禁食联合产热脂肪活化可一定程度上促进肝脏糖代谢过程以维持糖代谢稳态。但我们未测定胰岛素水平以及脂肪激酶如瘦素、脂联素水平,尚不清楚间歇性禁食联合产热脂肪活化对胰岛功能与胰岛素敏感性的改善作用。此外,β3-肾上腺素能受体不仅在棕色脂肪细胞上高表达,也表达于膀胱,同时β3-肾上腺素能受体激动剂可非特异性结合其他肾上腺素能受体,继而影响心血管功能26-27。我们仍需进一步评估间歇性禁食联合产热脂肪活化对于心血管系统的影响。

作者贡献声明

赵旭赟负责实验设计,吴凯敏负责实验操作,赵旭赟、吴凯敏负责数据分析,赵旭赟、麻静、吴凯敏参与论文写作及修改。所有作者均阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by ZHAO Xuyun. The experiment was carried out by WU Kaimin. The data was analyzed by ZHAO Xuyun and WU Kaimin. The manuscript was drafted and revised by ZHAO Xuyun, MA Jing and WU Kaimin. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

WANG W S, SEALE P. Control of brown and beige fat development[J]. Nat Rev Mol Cell Biol, 2016, 17(11): 691-702.

[本文引用: 1]

HARMS M, SEALE P. Brown and beige fat: development, function and therapeutic potential[J]. Nat Med, 2013, 19(10): 1252-1263.

[本文引用: 1]

SAKERS A, DE SIQUEIRA M K, SEALE P, et al. Adipose-tissue plasticity in health and disease[J]. Cell, 2022, 185(3): 419-446.

[本文引用: 1]

WOLFRUM C, GERHART-HINES Z. Fueling the fire of adipose thermogenesis[J]. Science, 2022, 375(6586): 1229-1231.

[本文引用: 1]

HAO L, SCOTT S, ABBASI M, et al. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice[J]. J Pharmacol Exp Ther, 2019, 369(3): 419-427.

[本文引用: 2]

PERES VALGAS DA SILVA C, CALMASINI F, ALEXANDRE E C, et al. The effects of mirabegron on obesity-induced inflammation and insulin resistance are associated with brown adipose tissue activation but not beiging in the subcutaneous white adipose tissue[J]. Clin Exp Pharmacol Physiol, 2021, 48(11): 1477-1487.

[本文引用: 2]

FINLIN B S, MEMETIMIN H, ZHU B B, et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans[J]. J Clin Invest, 2020, 130(5): 2319-2331.

[本文引用: 2]

O'MARA A E, JOHNSON J W, LINDERMAN J D, et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity[J]. J Clin Invest, 2020, 130(5): 2209-2219.

[本文引用: 1]

PUTMAN A K, CONTRERAS G A, MOTTILLO E P. Thermogenic adipose redox mechanisms: potential targets for metabolic disease therapies[J]. Antioxidants (Basel), 2023, 12(1): 196.

[本文引用: 1]

VARADY K A, CIENFUEGOS S, EZPELETA M, et al. Clinical application of intermittent fasting for weight loss: progress and future directions[J]. Nat Rev Endocrinol, 2022, 18(5): 309-321.

[本文引用: 1]

CATENACCI V A, PAN Z X, OSTENDORF D, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity[J]. Obesity (Silver Spring), 2016, 24(9): 1874-1883.

[本文引用: 1]

VARADY K A, BHUTANI S, KLEMPEL M C, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial[J]. Nutr J, 2013, 12(1): 146.

[本文引用: 1]

HARVIE M N, PEGINGTON M, MATTSON M P, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women[J]. Int J Obes (Lond), 2011, 35(5): 714-727.

[本文引用: 1]

LIU D Y, HUANG Y, HUANG C, et al. Calorie restriction with or without time-restricted eating in weight loss[J]. N Engl J Med, 2022, 386(16): 1495-1504.

[本文引用: 2]

CHO A R, MOON J Y, KIM S, et al. Effects of alternate day fasting and exercise on cholesterol metabolism in overweight or obese adults: a pilot randomized controlled trial[J]. Metabolism, 2019, 93: 52-60.

[本文引用: 1]

TREPANOWSKI J F, KROEGER C M, BARNOSKY A, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial[J]. JAMA Intern Med, 2017, 177(7): 930-938.

[本文引用: 1]

KLEMPEL M C, BHUTANI S, FITZGIBBON M, et al. Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss[J]. Nutr J, 2010, 9: 35.

[本文引用: 1]

DE CABO R, MATTSON M P. Effects of intermittent fasting on health, aging, and disease[J]. N Engl J Med, 2019, 381(26): 2541-2551.

[本文引用: 1]

LIU B, PAGE A J, HUTCHISON A T, et al. Intermittent fasting increases energy expenditure and promotes adipose tissue browning in mice[J]. Nutrition, 2019, 66: 38-43.

[本文引用: 1]

MARINHO T S, ORNELLAS F, AGUILA M B, et al. Browning of the subcutaneous adipocytes in diet-induced obese mouse submitted to intermittent fasting[J]. Mol Cell Endocrinol, 2020, 513: 110872.

[本文引用: 1]

LI G, XIE C, LU S, et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota[J]. Cell Metab, 2017, 26(4): 672-685.e4.

[本文引用: 1]

HEPLER C, WEIDEMANN B J, WALDECK N J, et al. Time-restricted feeding mitigates obesity through adipocyte thermogenesis[J]. Science, 2022, 378(6617): 276-284.

[本文引用: 1]

YONESHIRO T, AITA S, MATSUSHITA M, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men[J]. Obesity (Silver Spring), 2011, 19(1): 13-16.

[本文引用: 1]

SPONTON C H, DE LIMA-JUNIOR J C, LEIRIA L O. What puts the heat on thermogenic fat: metabolism of fuel substrates[J]. Trends Endocrinol Metab, 2022, 33(8): 587-599.

[本文引用: 1]

EZPELETA M, GABEL K, CIENFUEGOS S, et al. Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: a randomized controlled trial[J]. Cell Metab, 2023, 35(1): 56-70.e3.

[本文引用: 1]

GUREVICH-PANIGRAHI T, PANIGRAHI S, WIECHEC E, et al. Obesity: pathophysiology and clinical management[J]. Curr Med Chem, 2009, 16(4): 506-521.

[本文引用: 1]

BEL J S, TAI T C, KHAPER N, et al. Mirabegron: the most promising adipose tissue beiging agent[J]. Physiol Rep, 2021, 9(5): e14779.

[本文引用: 1]

/