上海交通大学学报(医学版), 2024, 44(1): 13-22 doi: 10.3969/j.issn.1674-8115.2024.01.002

论著 · 基础研究

A-PRF促进兔膝关节骨软骨损伤愈合的观察

朱泽宇,, 吕成奇, 刘旭凌, 陈昱璐, 邹德荣, 陆家瑜,

上海交通大学医学院附属第六人民医院口腔科,上海 200233

Observation on A-PRF promoting regeneration of osteochondral defects in rabbit knee joints

ZHU Zeyu,, LÜ Chengqi, LIU Xuling, CHEN Yulu, ZOU Derong, LU Jiayu,

Department of Stomatology, Shanghai Sixth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

通讯作者: 陆家瑜,电子信箱:angelinelu@sjtu.edu.cn

编委: 吴洋

收稿日期: 2023-05-30   接受日期: 2023-09-12  

基金资助: 上海交通大学医学院“双百人”项目.  20191832
国家自然科学基金.  82071160.  82370933

Corresponding authors: LU Jiayu, E-mail:angelinelu@sjtu.edu.cn.

Received: 2023-05-30   Accepted: 2023-09-12  

作者简介 About authors

朱泽宇(1998—),男,硕士生;电子信箱:2929441470@sjtu.edu.cn。 E-mail:2929441470@sjtu.edu.cn

摘要

目的·探讨改良型富血小板纤维蛋白 (advanced platelet-rich fibrin,A-PRF)在骨软骨再生中的作用。方法·获取新西兰兔骨髓间充质干细胞(bone-marrow mesenchymal stem cells,BMSCs)和膝关节软骨细胞;通过低速离心兔心脏血液获得A-PRF。采用光学显微镜观察A-PRF的组织学结构;ELISA法检测A-PRF中生长因子,包括血小板衍生生长因子、转化生长因子-β、胰岛素样生长因子、血管内皮生长因子、表皮生长因子和成纤维细胞生长因子的释放;采用活/死细胞双染法及MTT法检测A-PRF对兔BMSCs细胞毒性及增殖情况的影响;采用实时荧光定量聚合酶链反应(qRT-PCR)检测A-PRF对兔BMSCs Ⅱ型胶原蛋白、聚集蛋白聚糖、碱性磷酸酶(ALP)和骨钙素(OCN)基因表达的影响;使用transwell小室测定A-PRF对于兔BMSCs以及软骨细胞迁移能力的影响。建立兔膝关节骨软骨缺损模型,将18只兔随机分为3组:A-PRF组(n=6)在缺损处植入A-PRF;A-PRF+BMSCs组(n=6)植入接种兔BMSCs的A-PRF;对照组(n=6)不进行植入操作。术后12周处死兔,采用苏木精-伊红(H-E)、甲苯胺蓝和番红O-固绿染色进行膝关节标本的组织学观察,并根据膝关节的表面形态学与组织学情况,采用国际软骨修复协会(International Cartilage Repair Society,ICRS)评分系统进行宏观与组织学评分。结果·A-PRF具有松散的网络结构,可以缓慢释放生长因子。加入A-PRF后,未观察到其对兔BMSCs具有细胞毒性;在加入A-PRF后24、48和72 h,BMSCs的增殖能力均明显升高(均P<0.05),成软骨相关基因Ⅱ型胶原蛋白、聚集蛋白聚糖,以及成骨相关基因ALPOCN均显著上调(均P<0.05)。加入A-PRF后,兔BMSCs与软骨细胞的迁移能力均显著增强(均P<0.05),且兔BMSCs的迁移能力显著高于软骨细胞(P=0.025)。在兔膝关节缺损模型中,观察关节表面形态,可见A-PRF组和A-PRF+BMSCs组缺损均基本恢复,而对照组仅有软组织覆盖。在ICRS宏观评分方面,A-PRF组与A-PRF+BMSCs组的差异无统计学意义,但2组评分均显著高于对照组(均P<0.05)。组织学观察显示,A-PRF组和A-PRF+BMSCs组均产生骨软骨修复,但A-PRF组软骨更加成熟,对照组则形成纤维修复。在ICRS组织学评分方面,A-PRF组与A-PRF+BMSCs组的差异无统计学意义,但2组评分均显著高于对照组(均P<0.05)。结论·自体A-PRF具有良好的生物相容性和促进BMSCs增殖的能力,在体外和体内均可促进软骨和软骨下骨的修复。

关键词: 骨软骨损伤 ; 改良型富血小板纤维蛋白 ; 生长因子 ; 硬组织再生

Abstract

Objective ·To explore the role of advanced platelet-rich fibrin (A-PRF) in osteochondral regeneration. Methods ·Bone-marrow mesenchymal stem cells (BMSCs) and knee joint chondrocytes were obtained from New Zealand rabbits. A-PRF was obtained by low-speed centrifugation of the heart blood of rabbits. The histological structure of A-PRF was observed by an optical microscope. The release of growth factors in A-PRF was detected by ELISA, including platelet-derived growth factor, transforming growth factor-β, insulin-like growth factor, vascular endothelial growth factor, epidermal growth factor and fibroblast growth factor. A-PRF's cytotoxicity and capability for promoting the proliferation of rabbit BMSCs were detected by live/dead double staining and MTT methods. The effect of A-PRF on the gene expression of type Ⅱ collagen, aggrecan, alkaline phosphatase (ALP) and osteocalcin (OCN) in rabbit BMSCs was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Transwell chambers were used to determine the effect of A-PRF on the migration ability of rabbit BMSCs and the chondrocytes. Rabbit knee osteochondral defect models were established, and 18 rabbits were randomly divided into 3 groups. The A-PRF group (n=6) was implanted with A-PRF in the defect, the A-PRF+BMSCs group (n=6) was implanted with rabbit BMSCs on A-PRF, and the control group (n=6) did not undergo implantation. The rabbits were sacrificed 12 weeks after surgery and the knee joint specimens were stained with hematoxylin-eosin (H-E), toluidine blue and safranin O/fast green. Based on the surface morphology and histology of the knee joints, the International Cartilage Repair Society (ICRS) scoring system was used for macroscopic and histological scoring. Results ·A-PRF had a loose network structure and can slowly release growth factors. No cytotoxicity to rabbit BMSCs was observed after adding A-PRF, and the the capability for promoting the proliferation of rabbit BMSCs was significantly increased at 24, 48 and 72 h after adding A-PRF (all P<0.05). Chondrogenesis-related gene Ⅱ collagen and aggrecan, as well as osteogenesis-related genes ALP and OCN were significantly up-regulated (all P<0.05). After adding A-PRF, the migration abilities of rabbit BMSCs and chondrocytes were significantly enhanced (both P<0.05), and the migration ability of rabbit BMSCs was significantly higher than that of chondrocytes (P=0.025). The joint surface morphology in the rabbit knee joint defect models was observed. It can be seen that the defects in the A-PRF group and the A-PRF+BMSCs group were basically restored, while the the defects in the control group were only covered by soft tissue. In the ICRS macroscopic score, there was no statistical difference between the A-PRF group and the A-PRF+BMSCs group, but the scores of the two groups were all significantly higher than those of the control group (all P<0.05). According to the histological results, both the A-PRF group and the A-PRF+BMSCs group formed osteochondral repair, but the cartilage in the A-PRF group was more mature, while the control group formed fibrous repair. In the ICRS histological score, there was no statistical difference between the A-PRF group and the A-PRF+BMSCs group, but the scores of both the groups were significantly higher than those of the control group (both P<0.05). Conclusion ·Autologous A-PRF has good biocompatibility and the capability for promoting the proliferation of BMSCs. It can promote the repair of cartilage and subchondral bone both in vitro and in vivo.

Keywords: osteochondral defect ; advanced platelet-rich fibrin (A-PRF) ; growth factor ; hard tissue regeneration

PDF (4234KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朱泽宇, 吕成奇, 刘旭凌, 陈昱璐, 邹德荣, 陆家瑜. A-PRF促进兔膝关节骨软骨损伤愈合的观察. 上海交通大学学报(医学版)[J], 2024, 44(1): 13-22 doi:10.3969/j.issn.1674-8115.2024.01.002

ZHU Zeyu, LÜ Chengqi, LIU Xuling, CHEN Yulu, ZOU Derong, LU Jiayu. Observation on A-PRF promoting regeneration of osteochondral defects in rabbit knee joints. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(1): 13-22 doi:10.3969/j.issn.1674-8115.2024.01.002

膝关节骨软骨损伤在临床上十分常见,但骨软骨组织的再生能力有限。因此,膝关节骨软骨组织一旦损坏,便很难自行修复。目前,组织工程是一种很有潜力的修复骨软骨缺损的方法1-4。研究发现,富血小板血浆(platelet-rich plasma,PRP)是一种从血液中分离出来的改良纤维蛋白胶,可作为细胞支架修复软骨缺损,作为降解释放的内源性生长因子5-6。在PRP的基础上,进一步的研究7-8表明,无需使用抗凝剂、凝血酶或氯化钙等任何生化修饰,便可以从自体全血中获得富血小板纤维蛋白(platelet-rich fibrin,PRF),从而最大限度地降低交叉污染的风险。因此,PRF被视为支持细胞迁移和细胞因子释放的生物愈合基质。可通过较低的离心力以及略微增加离心时间,将PRF进一步修饰为改良型富含血小板的纤维蛋白 (advanced platelet-rich fibrin,A-PRF)。与PRF相比,A-PRF包含更多的生长因子9-10

A-PRF含有大量的纤维蛋白以及来源于血小板和白细胞的多种生长因子及细胞因子,包括血小板衍生生长因子(platelet-derived growth factor,PDGF)、转化生长因子-β(transforming growth factor-β,TGF-β)、胰岛素样生长因子(insulin-like growth factor,IGF)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、表皮生长因子(epidermal growth factor,EGF)和成纤维细胞生长因子 (fibroblast growth factor,FGF)11-12。各种因子之间可协同增强细胞功能,促进蛋白多糖和Ⅱ型胶原蛋白的合成,并刺激细胞分裂增殖。此外,A-PRF凝块表现出更松散的结构,具有更多的纤维间隙,并且其中还含有更多的细胞。同时,即使在血块的远端也能发现白细胞和血小板。一些研究13-15发现,与PRP和PRF相比,A-PRF释放出更多的生长因子,提示A-PRF是一种强大的软骨细胞有丝分裂刺激剂,是再生医学领域的细胞分化诱导剂。A-PRF还能增强细胞的迁移能力,对骨髓、皮肤、根尖、牙龈等来源的间充质干细胞以及神经干细胞均具有募集作用。同时,PRF也被证明对于软骨细胞具有一定的募集作用1416-17。这种潜在的募集作用使A-PRF在脱细胞支架应用方面具有潜力。

目前,PRF与A-PRF在骨缺损修复中的研究已较为成熟18-21,但是在骨软骨缺损修复中的应用较少。SHEU等22采用传统PRF混合软骨碎片治疗猪股骨髁骨软骨缺损;SUMARTA等23采用传统PRF接种人脐带间充质干细胞,治疗大鼠下颌骨髁突的软骨缺损,可以一定程度诱导间充质干细胞增殖与成软骨分化。然而,由于A-PRF的结构更疏松,所含的细胞因子和生长因子更多,因此具有更强的成软骨分化诱导能力。ABD EL RAOUF等24比较了传统PRF与A-PRF对于软骨细胞的作用,结果显示A-PRF与传统PRF均能促进兔软骨细胞的增殖及骨软骨缺损修复,但A-PRF的促增殖及促组织修复能力相较于传统PRF更强,尤其是在组织修复早期。但目前A-PRF对于骨髓间充质干细胞(bone-marrow mesenchymal stem cells,BMSCs)成软骨分化的诱导能力尚未可知。

在本实验中,我们抽取兔心血,通过低速离心获得A-PRF,检测其对BMSCs的生物相容性、增殖、软骨和骨分化能力及迁移能力的影响,并观察A-PRF修复兔膝关节骨软骨缺损的作用,以探讨A-PRF在软骨和骨再生中的应用价值。

1 材料与方法

1.1 材料

1.1.1 实验动物

12月龄健康普通级雄性新西兰兔,平均体质量2.5 kg。动物购自上海市松江区松联实验动物场,饲养于上海交通大学医学院附属第六人民医院动物实验室。动物生产许可证号为SCXK(沪)2022-0006,使用许可证号为SYXK(沪)2021-0028。

1.1.2 主要试剂及仪器

甲基噻唑基二苯基溴化四唑(MTT)(Amresco,美国),10%中性福尔马林固定液(上海易驰生物科技有限公司,中国),二甲基亚砜(DMSO)(Sigma,美国),酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)试剂盒(上海酶联生物科技有限公司,中国),活/死细胞染色试剂盒(ScienCell,美国),QuantiTect SYBR Green PCR kit(Qiagen,德国)。

离心机(TR-18plus;江苏创英医疗器械有限公司,中国),iMark酶标仪(Bio-Rad,美国),NanoDrop2000分光光度计(Thermo Scientific,美国),吸收光酶标仪(ELX808;Bio-tek,美国),奥林巴斯光学显微镜(BX51;奥林巴斯,日本),倒置荧光显微镜(DMI6000B;Leica,德国),7900HT Fast实时荧光定量PCR系统(ABI,美国),Transwell 24孔细胞培养小室(Corning,美国)。

1.2 兔BMSCs与软骨细胞的分离与培养

提取兔BMSCs,于兔耳缘静脉注射3%戊巴比妥钠(1 mL/kg)将兔麻醉后,使用16号骨髓穿刺针连接含有少量肝素的10 mL无菌注射器,从双侧髂前上棘骨髓腔穿刺抽取骨髓共3~5 mL。将抽取的兔骨髓注入含有10%胎牛血清(fetal bovine serum,FBS)和1%青霉素/链霉素的Dulbecco改良Eagle培养基(DMEM)中,离心后弃去上清,加入培养基后置于37 ℃、体积分数为5% CO2、饱和湿度的培养箱中培养。将原代BMSCs培养14 d后,细胞传代并扩增以备使用。

提取兔软骨细胞,使用过量戊巴比妥钠麻醉处死兔。在无菌条件下从兔膝关节表面切取软骨组织并剪碎,在37 ℃环境中用0.25%Ⅱ型胶原酶溶液消化3 h。使用移液管吹打1 min,静置,并取上清液离心(180×g,5 min),取沉淀置于含10%FBS、1%青霉素/链霉素的DMEM培养基中,于37 ℃、体积分数为5% CO2、饱和湿度的培养箱中培养传代获得兔软骨细胞。本研究中使用的细胞均为第3代。

1.3 A-PRF的采集制备

抽取10 mL兔心血,低速离心(281.25×g,14 min)获得A-PRF10。兔心血离心后,离心管内容物分为3层,自下而上为红细胞沉积层、A-PRF层和血浆层。使用无菌镊子取出A-PRF纤维蛋白凝块,小心剪去下部的红细胞沉积层,得到A-PRF。

1.4 A-PRF的组织学观察

使用10%中性福尔马林固定A-PRF,石蜡包埋,垂直切片(厚度5 μm),用苏木精-伊红染色(H-E染色),光学显微镜(光镜)拍摄。

1.5 ELISA法检测A-PRF中生长因子

将A-PRF添加到20 mL磷酸盐缓冲液(phosphatebuffered saline,PBS)中并在37 ℃下孵育。前1~7 d,每日收集上清液。采用ELISA法量化生长因子(包括PDGF、VEGF、TGF-β、IGF、FGF和EGF)的持续释放。具体过程:将40 μL测定稀释剂和10 μL样品置于包被有抗体的96孔板上,在37 ℃下孵育30 min;用洗涤缓冲液洗孔5次,用过氧化物酶结合抗体溶液孵育30 min,加入酶底物溶液;避光孵育15 min后,加入50 μL终止液终止酶反应;在450 nm处,在iMark酶标仪上测量吸光度。所有样品均分为3份重复测试。

1.6 兔BMSCs的接种与增殖检测

采用活/死细胞双染法观察A-PRF对兔BMSCs的细胞毒性。用A-PRF培养兔BMSCs 72 h后,每孔加入100 μL染色稀释液,室温避光孵育30 min,使用倒置荧光显微镜观察兔BMSCs的存活与死亡情况。

采用MTT法确定A-PRF在培养24、48和72 h后对BMSCs增殖的影响。在每个孵育期后,每孔加入50 μL MTT溶液,并在37 ℃下孵育4 h,使细胞发生反应;随后加入150 μL DMSO以溶解被活细胞还原的紫色甲臜晶体;使用吸收光酶标仪在490 nm处测量所得溶液的吸光度。

1.7 实时荧光定量聚合酶链反应(qRT-PCR)检测A-PRF对于兔BMSCs基因表达的影响

使用A-PRF以及含10%FBS和1%青霉素/链霉素的DMEM培养基培养兔BMSCs 7 d,从中提取总RNA。对照组中仅使用含10% FBS和1%青霉素/链霉素的DMEM培养基培养兔BMSCs。使用NanoDrop2000分光光度计测定RNA浓度,并使用0.5 μg RNA合成cDNA(Promega,美国)。使用7900HT Fast实时荧光定量PCR系统进行PCR反应。QuantiTect SYBR Green PCR试剂盒用于量化Ⅱ型胶原蛋白(type Ⅱ collagen)、聚集蛋白聚糖(aggrecan)、碱性磷酸酶(ALP)和骨钙素(OCN)的基因转录水平,引物见表1。实时PCR反应在94 ℃下进行15 s,延伸步骤在65 ℃下进行30 s。转录水平标准化为β-肌动蛋白,并使用2-ΔΔCt公式计算。

表1   qRT-PCR引物

Tab 1  Primer sequences for qRT-PCR

GeneSequence
Forward (5′→3′)Reverse (5′→3′)
Type Ⅱ collagenTCCTGTGCGACGACATAATCCTTTGGTCCTGGTTTCC
AggrecanCCCGAGAATCAAATGGTAGTTGGGCAGCGAGA
ALPCGTGGCAACTCCATCTTAGGGTTTCTTGTCCGTGT
OCNACTCTTGTCGCCCTGCTGTCGCTGCCCTCCCTCT

新窗口打开| 下载CSV


1.8 兔BMSCs及软骨细胞迁移的观察

将A-PRF剪成约3 mm×3 mm×3 mm大小的小块,置于24孔transwell的下室,加入400 μL含10% FBS与1% 青霉素/链霉素的DMEM培养基,对照组中仅于下室加入400 μL含10% FBS与1%青霉素/链霉素的DMEM培养基。将200 μL兔BMSCs或软骨细胞以5×104个/mL接种在transwell的上室。孵育48 h后,取出transwell小室并用棉签小心擦拭上表面,使用4%多聚甲醛溶液固定15 min后,PBS冲洗,使用0.5%结晶紫染色10 min,再冲洗。在10倍光镜下,随机选择5个视野并计数。均重复3次。

1.9 兔膝关节骨软骨缺损建模、分组及关节评分

于兔耳缘静脉注射3%戊巴比妥钠(1 mL/kg)进行麻醉。行髌骨外侧切口,进行髌骨内侧脱位,显露膝关节。然后,在髌骨沟制备直径5 mm、深度3 mm的柱状全层骨软骨缺损5

A-PRF被切成直径5 mm、深度3 mm的柱状,用于体内植入。植入前,将2 × 107个/mL的兔BMSCs接种到支架并孵育4 h。18只兔随机分为3组:A-PRF组(n=6)植入A-PRF;A-PRF+BMSCs组(n=6)植入A-PRF+BMSCs;对照组(n=6)不进行植入操作。

术后12周处死兔,采用国际软骨修复协会(International Cartilage Repair Society,ICRS)宏观评估评分进行关节表面形态学和目视评估25。取出植入的标本固定在10%中性福尔马林中,然后将脱钙的标本包埋在石蜡中并垂直切片(厚5 μm)。对标本进行苏木精-伊红(H-E)、甲苯胺蓝和番红O-固绿染色(甲苯胺蓝和番红O染色可以结合软骨中带负电荷的蛋白多糖),观察软骨基质的分布、植入物A-PRF软骨界面的愈合、新软骨与软骨下骨的结合,以及A-PRF的体内降解。根据ICRS评分系统,由3名观察员评估再生组织的质量26

1.10 统计学分析

所有测量值均以x±s表示,采用SPSS 11.0软件进行one-way ANOVA方差分析。P<0.05表示差异有统计学意义。

2 结果

2.1 A-PRF的组织学观察及生长因子的持续释放

A-PRF的H-E染色显示稀疏的纤维网状结构,其中捕获了白细胞和血小板(图1A)。疏松的组织学结构提示其可能有利于细胞的黏附、生长以及营养物质运输,是一种良好的支架材料。ELISA法观察到PDGF、VEGF、TGF-β、IGF-1、FGF和EGF等分泌性生长因子持续释放(图1B),提示A-PRF可能具有促进增殖、诱导分化的能力。

图1

图1   A-PRF组织结构的光镜观察及生长因子释放

Note: A. H-E staining of A-PRF. Sparse fibrous reticular structures were shown, which trapped white blood cells (red circles) and platelets (blue circles). Scale bar=50 μm. B. Sustained release of growth factors of A-PRF in PBS.

Fig 1   Observation of tissue structure under light microscope and growth factor release of A-PRF


2.2 A-PRF对兔BMSCs的细胞毒性及细胞增殖检测

活/死细胞双染结果(图2A)显示:大部分BMSCs呈绿色,为活细胞;极少数呈红色,为死细胞;说明A-PRF对于BMSCs未表现出细胞毒性。加入A-PRF后24、48和72 h,BMSCs的增殖能力明显高于对照组(图2B),表明A-PRF具有促BMSCs增殖作用,进一步证实了A-PRF良好的生物相容性。

图2

图2   A-PRF的细胞毒性与促增殖能力检测

Note: A. Live/dead double staining. Scale bar=100 μm. B.The results of proliferative capacity test. P=0.015, P=0.000, P=0.005, compared with the control group.

Fig 2   Cytotoxicity and proliferative capacity of A-PRF


2.3 BMSCs的基因表达

qRT-PCR检测经A-PRF处理的兔BMSCs中软骨特异性标志物的表达。结果显示,与对照组相比,软骨特异性标志物type Ⅱ collagen和aggrecan的mRNA表达上调,骨特异性标志物ALPOCN的mRNA表达也上调(图3)。

图3

图3   A-PRF处理后兔BMSCs体外成软骨与成骨基因表达分析(n=3)

NoteP=0.032, P=0.000, P=0.007, compared with the control group.

Fig 3   Gene expression analysis of in vitro chondrogenesis and osteogenesis of rabbit BMSCs treated by A-PRF (n=3)


2.4 A-PRF对于兔BMSCs及软骨细胞迁移能力的影响

当培养基中仅存在FBS时,兔BMSCs与软骨细胞的迁移能力比较,差异无统计学意义(P=0.962);当在培养基中加入A-PRF时,兔BMSCs与软骨细胞的迁移能力均显著增强(均P<0.05);加入A-PRF

后,兔BMSCs的迁移能力显著高于软骨细胞(P=0.025)。详见图4

图4

图4   A-PRF对兔BMSCs与软骨细胞迁移能力的影响

NoteP=0.962, P=0.025, P=0.006, P=0.000.

Fig 4   Effect of A-PRF on the migration ability of rabbit BMSCs and chondrocytes


2.5 A-PRF对兔膝关节骨软骨缺损的修复作用

在兔膝关节骨软骨缺损模型建造并施行骨软骨缺损修复术后12周内,所有兔均恢复良好,未出现明显感染等症状。取出标本后观察关节面,A-PRF组和A-PRF+BMSCs组软骨缺损基本恢复,而对照组仅有软组织覆盖(图5)。A-PRF组和A-PRF+BMSCs组ICRS 宏观评分比较,差异无统计学意义,但2组评分均显著高于对照组(均P<0.05,图6A)。组织学观察显示,A-PRF组和A-PRF+BMSCs组的软骨缺损处基本被新的软骨组织填满,2组的软骨下骨缺损也被新骨组织填充,植入物与周围的天然软骨和软骨下骨

图5

图5   膝关节标本的大体观察

Fig 5   General observation of knee joint specimens


图6

图6   A-PRFBMSCs在骨软骨修复体内实验中的定量评估(n=6)

Note: A. ICRS macroscopic score. B. ICRS histological score. P=0.003, P=0.011, P=0.002, P=0.019, compared with the control group. P=0.767, P=0.534, compared with the A-PRF+BMSCs group.

Fig 6   In vivo-quantitative assessment of A-PRF and BMSCs in osteochondral repair(n=6)


结合良好,没有明显的纤维组织界面(图7A)。A-PRF组再生软骨和软骨下骨层厚度与邻近宿主组织相当,成熟的软骨下骨小梁结构与宿主相似;关节软骨与软骨下骨之间的潮线结构是连续的,是成熟软骨的典型特征。A-PRF+BMSCs组新生软骨层厚度明显大于A-PRF组,表面纤维软骨膜较厚,新生软骨和软骨下骨尚未重建成熟,潮线结构略显不清晰。对照组缺损区域无明显新生软骨和骨覆盖,仅有纤维组织覆盖(图7B)。在ICRS组织学评分中,A-PRF组评分高于A-PRF+BMSCs组,但差异无统计学意义,而2组评分均显著高于对照组(均P<0.05,图6B)。

图7

图7   膝关节标本的组织学观察

Note: A. Scale bar=1 mm. B. Scale bar=50 μm.

Fig 7   Histological observation of knee joint specimens


3 讨论

活动关节周围的软骨在支撑机械负荷和促进运动方面发挥作用,其降解会导致剧烈疼痛和运动障碍。如果新组织不能在结构上与天然软骨结合,即使是最先进的生物和材料也无法成功地形成软骨替代品。因此新基质和原始基质之间整合不良,可能导致了许多软骨组织工程中的再生修复失败27

低速长时间离心得到的A-PRF是一种高孔隙率、高含水量的自体纤维蛋白支架,可以很好地模拟软骨和骨骼的生物学特性。A-PRF具有良好的生物相容性,可以促进BMSCs的增殖。由于BMSCs具有软骨形成能力,已被用于软骨修复。当其被添加到软骨缺损处时,自体支架可以很好地接触缺损周围的天然软骨和软骨下骨,并且不会产生免疫排斥反应。多孔的三维网状结构有利于携带细胞、血小板和生长因子,可以为它们提供适宜的短期庇护环境;这种结构还非常有利于氧气和营养物质的扩散,可以为细胞增殖和分化提供适宜的环境28。同时,细胞和生长因子可以通过化学键与纤维蛋白结合,更稳定地储存在内部,从而减少制备过程中细胞和生长因子的损失。在此过程中,通过收集更多的细胞,白细胞层增厚,并获得更高比例的中性粒细胞及更多的血小板29。在纤维蛋白降解过程中,血小板可在没有任何人工制剂的情况下不断被激活并释放生长因子,从而避免全身或局部免疫反应的风险。这种疏松多孔的三维结构以及含有更多细胞和生长因子的特殊结构,使得A-PRF在促进血管生成和软硬组织再生方面具有明显的优势。

水分占关节软骨湿重的80%左右30。为了模拟这种环境,富含水分的三维水凝胶网络已成为原位软骨再生的热门选择。作为一种水凝胶,A-PRF主要由纤维蛋白组成。纤维蛋白为细胞生长提供了天然的微环境,具有支持细胞附着以及刺激细胞外基质合成和组装的天然倾向,从而促进蛋白多糖和Ⅱ型胶原蛋白的产生24。然而,当将这种纤维蛋白水凝胶植入体内时,由于其机械强度弱于周围组织,也会发生降解。但其与基质间的交联可以提高其机械完整性并减缓其降解,同时对嵌入其中的细胞也有显著影响31-32。A-PRF中的生长因子,如PDGF、TGF-β、IGF、VEGF、EGF和FGF,已显示出促进软骨和骨再生的潜力33-34。这种功能化支架在降解过程中可释放结合调节成分,从而增强缺损处的骨软骨再生。

本研究结果显示,A-PRF可以显著上调Ⅱ型胶原蛋白和聚集蛋白聚糖的基因表达。Ⅱ型胶原蛋白与聚集蛋白聚糖均为成软骨分化时表达的特异性基因。其中Ⅱ型胶原蛋白是软骨细胞增殖期的特异性标志物,聚集蛋白聚糖则是软骨细胞外基质的主要组成物质,这2种基因所表达的蛋白对关节软骨的稳定与功能有重大影响。这2种基因的同时表达表明了A-PRF有利于BMSCs分泌软骨基质,并且可以诱导BMSCs向关节透明样软骨细胞分化,而非成纤维样软骨细胞,最终可能形成具有良好结构与功能的软骨。同时,经A-PRF处理的BMSCs中的ALPOCN成骨基因表达也显著上调。ALPOCN是成骨特异性基因。其中,ALP是公认的成骨细胞特异性基因,其表达上调代表兔BMSCs在A-PRF的作用下,向成骨细胞分化、增殖,并且周围基质开始成熟,骨组织修复进入了成骨早期阶段;OCN则可以与钙离子结合,调节钙离子稳态与骨骼矿化,其表达上调也证明了兔BMSCs的成骨分化,表明骨组织修复进入了中晚期的矿化阶段。因此,这2种成骨特异性基因的上调,表明A-PRF有助于成骨分化35

此外,本研究结果显示,A-PRF也能促进兔BMSCs的迁移,且其效果显著优于对周围软骨细胞的趋化作用。该结果说明A-PRF可能对于兔体内的间充质干细胞也具有促进其归巢的作用。

在膝关节骨软骨缺损动物模型中,A-PRF组新形成的软骨基本充满缺损区,并与缺损区周围的天然软骨结合良好,无明显的纤维组织界面。在体外PBS中,A-PRF纤维支架至少可以维持2个月。由此可见,A-PRF的降解率与膝关节缺损处新生软骨的再生率基本一致。A-PRF中的生长因子可能在促进软骨和软骨下骨再生中发挥作用。A-PRF可促进BMSCs表达Ⅱ型胶原蛋白和聚集蛋白聚糖等软骨细胞相关基因。Ⅱ型胶原蛋白和聚集蛋白聚糖是软骨基质的主要成分,它们的分泌和沉积促进软骨再生。因此,A-PRF可以显著促进兔BMSCs原位成软骨分化,也不再依赖以往软骨组织工程中对于体外软骨细胞培养的需求。A-PRF可促进BMSCs成骨细胞相关基因ALPOCN的表达,说明A-PRF也具有促进软骨下骨修复的潜力。A-PRF对兔BMSCs以及软骨细胞迁移能力的促进作用,进一步提示其在体内具有潜在的细胞募集能力,具有巨大的应用潜力。

在A-PRF+BMSCs组中,新生软骨的厚度大于A-PRF组。这是因为A-PRF疏松的纤维网状结构可携带大量BMSCs,可以显著促进软骨基质的分泌和沉积,用于关节软骨缺损的修复和再生。然而,过度增厚的再生软骨伴随着较厚的纤维软骨膜和不完整的潮线结构,这提示含有大量BMSCs的A-PRF可显著促进软骨再生,但新生软骨在术后3个月内未完成重建成熟。A-PRF组新生软骨和软骨下骨组织基本重建成熟,形态与周围宿主组织基本一致,说明A-PRF本身可以完成全层骨软骨缺损的修复。同迁移能力检测结果一样,A-PRF可能可以通过募集体内自体的间充质干细胞,对兔膝关节组织进行再生修复。因此,脱细胞的A-PRF在体内的治疗效果与加入种子细胞兔BMSCs的A-PRF比较,并没有显著差异。该结果也与CHENG等36在颞下颌关节软骨组织再生修复中所观察到的结果一致。脱细胞A-PRF避免了提取BMSCs的创伤,减少了BMSCs体外增殖及材料接种的过程,缩短了植入前的准备时间,也避免了与FBS等难以确定具体组分物质的接触培养,降低了治疗中的不确定性、潜在的免疫反应和病原感染风险,因此具有巨大的软骨及软骨下骨缺损修复的应用潜力。

综上所述,自体A-PRF具有良好的生物相容性,可以促进BMSCs的增殖。这种多孔的三维网络结构有利于携带细胞、血小板和生长因子,并在降解过程中释放它们。A-PRF可促进BMSCs表达软骨细胞相关基因Ⅱ型胶原蛋白和聚集蛋白聚糖,以及成骨细胞相关基因ALPOCN。单独使用A-PRF可修复兔膝关节全层软骨缺损,在软骨和软骨下骨再生方面具有巨大应用潜力。

作者贡献声明

朱泽宇、陆家瑜、邹德荣参与了实验设计;朱泽宇、吕成奇、陈昱璐参与了实验操作;吕成奇负责数据分析;朱泽宇、刘旭凌、陈昱璐、陆家瑜、邹德荣参与了论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by ZHU Zeyu, LU Jiayu and ZOU Derong. The experiments were completed by ZHU Zeyu, LÜ Chengqi and CHEN Yulu. The data was analyzed by LÜ Chengqi. The manuscript was drafted and revised by ZHU Zeyu, LIU Xuling, CHEN Yulu, LU Jiayu and ZOU Derong. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

GETGOOD A, BROOKS R, FORTIER L, et al. Articular cartilage tissue engineering: today′s research, tomorrow′s practice?[J]. J Bone Joint Surg Br, 2009, 91(5): 565-576.

[本文引用: 1]

STEINWACHS M R, GUGGI T, KREUZ P C. Marrow stimulation techniques[J]. Injury, 2008, 39 (Suppl 1): S26-S31.

HANGODY L, VÁSÁRHELYI G, HANGODY L R, et al. Autologous osteochondral grafting: technique and long-term results[J]. Injury, 2008, 39 (Suppl 1): S32-S39.

REVELL C M, ATHANASIOU K A. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects[J]. Tissue Eng Part B Rev, 2009, 15(1): 1-15.

[本文引用: 1]

XIE X, WANG Y, ZHAO C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration[J]. Biomaterials, 2012, 33(29): 7008-7018.

[本文引用: 2]

KESIKBURUN S. Intra-articular platelet-rich plasma injections were not superior to viscosupplementation for early knee degeneration[J]. Ann Transl Med, 2015, 3(16): 228.

[本文引用: 1]

STELLER D, HERBST N, PRIES R, et al. Impact of incubation method on the release of growth factors in non-Ca2+-activated PRP, Ca2+-activated PRP, PRF and A-PRF[J]. J Cranio Maxillo Facial Surg, 2019, 47(2): 365-372.

[本文引用: 1]

DOHAN EHRENFEST D M, RASMUSSON L, ALBREKTSSON T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF)[J]. Trends Biotechnol, 2009, 27(3): 158-167.

[本文引用: 1]

CLARK D, RAJENDRAN Y, PAYDAR S, et al. Advanced platelet-rich fibrin and freeze-dried bone allograft for ridge preservation: a randomized controlled clinical trial[J]. J Periodontol, 2018, 89(4): 379-387.

[本文引用: 1]

GHANAATI S, BOOMS P, ORLOWSKA A, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells[J]. J Oral Implantol, 2014, 40(6): 679-689.

[本文引用: 2]

EGLE K, SALMA I, DUBNIKA A. From blood to regenerative tissue: how autologous platelet-rich fibrin can be combined with other materials to ensure controlled drug and growth factor release[J]. Int J Mol Sci, 2021, 22(21): 11553.

[本文引用: 1]

MASUKI H, OKUDERA T, WATANEBE T, et al. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF)[J]. Int J Implant Dent, 2016, 2(1): 19.

[本文引用: 1]

YU M, WANG X, LIU Y, et al. Correction to: cytokine release kinetics of concentrated growth factors in different scaffolds[J]. Clin Oral Investig, 2019, 23(4): 1999.

[本文引用: 1]

WONG C C, OU K L, LIN Y H, et al. Platelet-rich fibrin facilitates one-stage cartilage repair by promoting chondrocytes viability, migration, and matrix synthesis[J]. Int J Mol Sci, 2020, 21(2): E577.

[本文引用: 1]

NARAYANASWAMY R, PATRO B P, JEYARAMAN N, et al. Evolution and clinical advances of platelet-rich fibrin in musculoskeletal regeneration[J]. Bioengineering (Basel), 2023, 10(1): 58.

[本文引用: 1]

WONG C C, KUO T F, YANG T L, et al. Platelet-rich fibrin facilitates rabbit meniscal repair by promoting meniscocytes proliferation, migration, and extracellular matrix synthesis[J]. Int J Mol Sci, 2017, 18(8): E1722.

[本文引用: 1]

WONG C C, CHEN C H, CHAN W P, et al. Single-stage cartilage repair using platelet-rich fibrin scaffolds with autologous cartilaginous grafts[J]. Am J Sports Med, 2017, 45(13): 3128-3142.

[本文引用: 1]

DA SILVA L M P, SÁVIO D S F, DE ÁVILA F C, et al. Comparison of the effects of platelet concentrates produced by high and low-speed centrifugation protocols on the healing of critical-size defects in rat calvaria: a microtomographic and histomorphometric study[J]. Platelets, 2022, 33(8): 1175-1184.

[本文引用: 1]

ENGLER-PINTO A, SIESSERE S, CALEFI A, et al. Effects of leukocyte‐and platelet‐rich fibrin associated or not with bovine bone graft on the healing of bone defects in rats with osteoporosis induced by ovariectomy[J]. Clin Oral Implants Res, 2019, 30(10): 962-976.

FERREIRA SÁVIO D S, SILVA L M P D, REIS G G D, et al. Effects of platelet-rich fibrin produced by three centrifugation protocols on bone neoformation in defects created in rat calvaria[J]. Platelets, 2023, 34(1): 2228417.

TSUKIOKA T, HIRATSUKA T, NAKAMURA M, et al. An on-site preparable, novel bone-grafting complex consisting of human platelet-rich fibrin and porous particles made of a recombinant collagen-like protein[J]. J Biomed Mater Res Part B Appl Biomater, 2019, 107(5): 1420-1430.

[本文引用: 1]

SHEU S Y, WANG C H, PAO Y H, et al. The effect of platelet-rich fibrin on autologous osteochondral transplantation: an in vivo porcine model[J]. Knee, 2017, 24(6): 1392-1401.

[本文引用: 1]

SUMARTA N P M, KAMADJAJA D B, HENDRIJANTINI N, et al. Human umbilical cord mesenchymal stem cells over platelet rich fibrin scaffold for mandibular cartilage defects regenerative medicine[J]. Pesq Bras Odontoped Clin Integr, 2021, 21: e0034.

[本文引用: 1]

ABD EL RAOUF M, WANG X, MIUSI S, et al. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma[J]. Platelets, 2019, 30(2): 213-221.

[本文引用: 2]

VAN DEN BORNE M P J, RAIJMAKERS N J H, VANLAUWE J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture[J]. Osteoarthr Cartil, 2007, 15(12): 1397-1402.

[本文引用: 1]

MAINIL-VARLET P, VAN DAMME B, NESIC D, et al. A new histology scoring system for the assessment of the quality of human cartilage repair: icrs Ⅱ[J]. Am J Sports Med, 2010, 38(5): 880-890.

[本文引用: 1]

ZHANG Z J, MCCAFFERY J M, SPENCER R G S, et al. Growth and integration of neocartilage with native cartilage in vitro[J]. J Orthop Res, 2005, 23(2): 433-439.

[本文引用: 1]

MIRHAJ M, TAVAKOLI M, VARSHOSAZ J, et al. Preparation of a biomimetic bi-layer chitosan wound dressing composed of A-PRF/sponge layer and L-arginine/nanofiber[J]. Carbohydr Polym, 2022, 292: 119648.

[本文引用: 1]

KOBAYASHI E, FLÜCKIGER L, FUJIOKA-KOBAYASHI M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF[J]. Clin Oral Investig, 2016, 20(9): 2353-2360.

[本文引用: 1]

PARMAR P A, CHOW L W, ST-PIERRE J P, et al. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration[J]. Biomaterials, 2015, 54: 213-225.

[本文引用: 1]

DOMÍNGUEZ PÉREZ J M, FERNÁNDEZ-SARMIENTO J A, AGUILAR GARCÍA D, et al. Cartilage regeneration using a novel autologous growth factors-based matrix for full-thickness defects in sheep[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(3): 950-961.

[本文引用: 1]

LEE C R, GRODZINSKY A J, SPECTOR M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis[J]. Biomaterials, 2001, 22(23): 3145-3154.

[本文引用: 1]

PARK H, TEMENOFF J S, HOLLAND T A, et al. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications[J]. Biomaterials, 2005, 26(34): 7095-7103.

[本文引用: 1]

BAE S E, CHOI D H, HAN D K, et al. Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells[J]. J Control Release, 2010, 143(1): 23-30.

[本文引用: 1]

CUI Y, HUANG R, WANG Y, et al. Down-regulation of LGR6 promotes bone fracture recovery using bone marrow stromal cells[J]. Biomed Pharmacother, 2018, 99: 629-637.

[本文引用: 1]

CHENG B, TU T, SHI X, et al. A novel construct with biomechanical flexibility for articular cartilage regeneration[J]. Stem Cell Res Ther, 2019, 10(1): 298.

[本文引用: 1]

/