Neurodevelopmental disorders (NDDs) are chronic developmental brain disorders that can affect cognition, motor, social adaptation, behavior and so on due to multiple genetic or acquired causes. Natural polysaccharides are synthesized by living organisms, located in the cell wall, inside and between cells, and outside the cells, and are essential components of life activities. Previous studies have found that natural polysaccharides play an important role in neurological diseases, which mainly ameliorate the behavioral abnormalities and clinical symptoms caused by anti-oxidative stress, anti-neuronal apoptosis, anti-neuroinflammation, anti-excitatory amino acid toxicity, and regulation of the brain-gut axis. This review summarizes the intervention role of 17 bioactive polysaccharides from plants and fungi in neurological diseases, aiming to provide new ideas for the research and treatment of NDDs.
ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2024, 44(6): 779-787 doi:10.3969/j.issn.1674-8115.2024.06.014
神经发育障碍(neurodevelopmental disorders,NDDs)是多种大脑发育中断的疾病,临床上通常是指在发育时期出现行为和认知障碍,表现为学习和实践某些智力、运动或社交技能时出现明显困难[1],例如智力障碍(intellectual disability,ID)、发育性言语或语言障碍(developmental speech or language disorder,DSD)、孤独症谱系障碍(autism spectrum disorder,ASD)、发育性学习障碍(developmental learning disorder,DLD)、注意缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)、抽动障碍(tic disorder,TD)和其他神经发育障碍等。NDDs发病率较高,其中ADHD发病率约为1.13%[2],ASD约为1%[3],TD为0.3%~0.9%[4],ID为0.9%~1.2%[5]。NDDs好发于男性,ADHD男女比例约为2.5∶1[2],ASD约为4∶1[6],TD约为4∶1[4],ID约为1.8∶1[5]。NDDs病因复杂,大多数尚不明确。目前,普遍认为NDDs是由神经生物学因素与环境因素独立或相互作用引起的,且越来越多的证据表明免疫因素与NDDs密切相关。有研究[7]报道了肠道微生物群与大脑之间的双向关系,多糖调节肠道微生物群的组成,并通过微生物-肠道-脑轴在疾病预防和治疗中发挥积极作用。目前,临床上尚无治愈NDDs的方法,故寻找早期可改善NDDs行为和症状的物质特别重要。
棘托竹荪菌是一种食用菌,其抗肿瘤、抗增殖、抗氧化等生物活性在不同的模型中均得到了验证。棘托竹荪菌多糖(Dictyophora echinovolvata polysaccharide,DEVP)是通过棘托竹荪菌蒸馏提取等一系列步骤获得的以α糖苷键连接为主的吡喃型糖[19]。大鼠嗜铬细胞瘤(PC12)细胞系是神经科学研究中常用的细胞系之一,故研究者主要利用H2O2诱导的PC12细胞模型研究了DEVP的神经保护作用及其可能的机制。YU等[20]发现,DEVP可抑制H2O2诱导的细胞神经毒性,逆转H2O2诱导的细胞形态变化和细胞内ROS聚集。此外,BCL-2相关X蛋白(BCL-2 associated X protein,BAX)、裂解胱天蛋白酶3(caspase-3)、细胞色素C和BCL-2蛋白表达水平的改变进一步表明DEVP通过抑制线粒体凋亡途径发挥神经保护作用。因此,DEVP可能是通过对抗氧化应激和凋亡来预防神经疾病发生的潜在候选物质。
1.3 美洲蜂鸣花多糖
美洲蜂鸣花是一种原产于北美的草本植物,在美国和日本广泛种植,其营养丰富的块茎是北美土著居民的主食并且可以增强机体免疫力[21]。CHU等[22]从美洲蜂鸣花中提取了美洲蜂鸣花多糖(Apios americana Medik flowers polysaccharide,AFP-2),分析出其主要是由甘露糖(2.53%)、鼠李糖(4.62%)、葡萄糖醛酸(4.87%)、半乳糖醛酸(6.09%)、葡萄糖(3.62%)、阿拉伯糖(49.46%)以及果糖(28.81%)组成;体外实验表明,AFP-2通过沉寂信息调节因子1(silent information regulator 1,SIRT1)/NRF2信号通路激活细胞内抗氧化系统,有效减轻H2O2引起的ROS积累和线粒体功能障碍;并在分子水平上发现自噬参与了H2O2诱导的PC12细胞中AFP-2的抗氧化过程。此外,该研究显示,AFP-2可通过抑制AKT/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路的磷酸化激活自噬。综上所述,AFP-2是一种有效的抗氧化剂,具有潜在的神经保护作用。
五味子是一种常用于治疗健忘或痴呆的传统中药。五味子多糖(Schisandra chinensis polysaccharide,SCP)是五味子成熟果实中的主要生物活性成分,主要成分为甘露糖、鼠李糖、葡萄糖醛酸、葡萄糖、半乳糖和阿拉伯糖。在AD动物模型中,SCP改善了AD小鼠的认知能力,降低了促炎细胞因子的水平,并抑制了海马中星形胶质细胞和小胶质细胞的激活[44]。SCP的抗AD作用,主要是通过激活NF-κB/MAPK通路来缓解神经炎症。XU等[45]从SCP中分离纯化得到了均质杂多糖SCP2-1,并通过体外实验证明SCP2-1主要通过上调低密度脂蛋白受体相关蛋白1(low density lipoprotein receptor-related protein 1,LRP-1),抑制NF-κB和JNK通路的过度激活,逆转LPS诱导的小胶质细胞极化。该研究通过体内实验利用LPS诱导的小鼠模型检测其对小胶质细胞活化和神经炎症的影响,结果表明SCP2-1可改善LPS诱导的小鼠认知功能障碍和神经炎症。结合以上研究结果,提示SCP具有抗神经炎作用。
3.3 牛樟芝多糖
牛樟芝是我国台湾地区特有的一种多孔真菌,富含多糖、萜类、类固醇和其他生物活性物质。研究者用培养的牛樟芝粉,经化学提取、分离和纯化后,得到一种多糖,命名为牛樟芝多糖(Antrodia camphorata polysaccharide,ACP)。ACP的相对分子质量为1.72×104,由葡萄糖和半乳糖组成,物质的量之比为2.21∶1[46]。研究证实ACP具有抗肿瘤活性[47]和抗神经炎作用[48]。在6-羟多巴胺(6-hydroxydopamine,6-OHDA)诱导的PD小鼠模型中,经ACP干预,小鼠的运动症状得到改善,并显著抑制NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症体及其下游炎症因子的表达[48]。ACP通过抑制ROS/NLRP3信号通路,表现出神经保护作用[48-49]。虽然ACP的组成和结构特征有待进一步研究,但研究结果提示ACP有改善PD患者运动症状的潜力。
The review was generally designed by ZENG Dejie and ZHAO Shibing. The manuscript was drafted and revised by ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, and SUN Qi. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
MORRIS-ROSENDAHL D J, CROCQ M A. Neurodevelopmental disorders: the history and future of a diagnostic concept[J]. Dialogues Clin Neurosci, 2020, 22(1): 65-72.
CORTESE S, SONG M J, FARHAT L C, et al. Incidence, prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: data, with critical re-analysis, from the Global Burden of Disease study[J]. Mol Psychiatry, 2023, 28: 4823-4830.
ZABLOTSKY B, BLACK L I, MAENNER M J, et al. Prevalence and trends of developmental disabilities among children in the United States: 2009‒2017[J]. Pediatrics, 2019, 144(4): e20190811.
MAENNER M, WARREN Z, WILLIAMS A, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years : Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020[J]. MMWR Surveill Summ, 2023, 72(SS-2):1-14.
SUN Q Y, CHENG L, ZENG X X, et al. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis[J]. Int J Biol Macromol, 2020, 164: 1484-1492.
MOHAMMED A S A, NAVEED M, JOST N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities)[J]. J Polym Environ, 2021, 29(8): 2359-2371.
ZHONG J, QIU X, YU Q, et al. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways[J]. Int J Biol Macromol, 2020, 163: 464-475.
OLASEHINDE T A, MABINYA L V, OLANIRAN A O, et al. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds[J]. Bioact Carbohydr Diet Fibree, 2019, 18: 100182.
OLASEHINDE T A, MABINYA L V, OLANIRAN A O, et al. Chemical characterization of sulfated polysaccharides from Gracilaria gracilis and Ulva lactuca and their radical scavenging, metal chelating, and cholinesterase inhibitory activities[J]. Int J Food Prop, 2019, 22:100-110.
MANLUSOC J K T, HSIEH C L, HSIEH C Y, et al. Pharmacologic application potentials of sulfated polysaccharide from marine algae[J]. Polymers (Basel), 2019, 11(7): E1163.
OLASEHINDE T A, OLANIRAN A O, OKOH A I. Sulfated polysaccharides of some seaweeds exhibit neuroprotection via mitigation of oxidative stress, cholinergic dysfunction and inhibition of Zn-induced neuronal damage in HT-22 cells[J]. BMC Complement Med Ther, 2020, 20(1): 251.
BAI L, XU D, ZHOU Y M, et al. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications[J]. Antioxidants (Basel), 2022, 11(12): 2491.
ABDUL WAHAB S M, JANTAN I, HAQUE M A, et al. Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents[J]. Front Pharmacol, 2018, 9: 661.
KIM W S, KIM Y E, CHO E J, et al. Neuroprotective effect of Annona muricata-derived polysaccharides in neuronal HT22 cell damage induced by hydrogen peroxide[J]. Biosci Biotechnol Biochem, 2020, 84(5): 1001-1012.
SHI X D, LI O Y, YIN J Y, et al. Structure identification of α-glucans from Dictyophora echinovolvata by methylation and 1D/2D NMR spectroscopy[J]. Food Chem, 2019, 271:338-344.
YU W X, LIN C Q, ZHAO Q, et al. Neuroprotection against hydrogen peroxide-induced toxicity by Dictyophoraechinovolvata polysaccharide via inhibiting the mitochondria-dependent apoptotic pathway[J]. Biomed Pharmacother, 2017, 88: 569-573.
CHU Q, ZHANG Y R, CHEN W, et al. Apios americana Medik flowers polysaccharide (AFP) alleviate cyclophosphamide-induced immunosuppression in ICR mice[J]. Int J Biol Macromol, 2020, 144: 829-836.
CHU Q, CHEN M, SONG D X, et al. Apios americana Medik flowers polysaccharide (AFP-2) attenuates H2O2 induced neurotoxicity in PC12 cells[J]. Int J Biol Macromol, 2019, 123: 1115-1124.
BYUN E B, CHO E J, KIM Y E, et al. Neuroprotective effect of polysaccharide separated from Perilla frutescens Britton var. acuta Kudo against H2O2-induced oxidative stress in HT22 hippocampus cells[J]. Biosci Biotechnol Biochem, 2018, 82(8): 1344-1358.
ZHU Y X, DING X, WANG M, et al. Structure and antioxidant activity of a novel polysaccharide derived from Amanita caesarea[J]. Mol Med Rep, 2016, 14(4): 3947-3954.
LI Z P, CHEN X, ZHANG Y F, et al. Protective roles of Amanita caesarea polysaccharides against Alzheimer's disease via Nrf2 pathway[J]. Int J Biol Macromol, 2019, 121: 29-37.
HU W J, LI Z P, WANG W Q, et al. Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in Alzheimer's disease: endoplasmic reticulum stress[J]. Food Funct, 2021, 12(21): 11009-11023.
WANG J, ZHANG Q B, ZHANG Z S, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica[J]. Int J Biol Macromol, 2008, 42(2): 127-132.
WANG J, LIU H D, JIN W H, et al. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron[J]. Int J Biol Macromol, 2016, 82: 878-883.
LIU H D, WANG J, ZHANG Q B, et al. Protective effect of fucoidan against MPP+-induced SH-SY5Y cells apoptosis by affecting the PI3K/AKT pathway[J]. Mar Drugs, 2020, 18(6): E333.
HE Y F, XU W Z, QIN Y M. Structural characterization and neuroprotective effect of a polysaccharide from Corydalis yanhusuo[J]. Int J Biol Macromol. 2020, 157: 759-768.
LI Y J, GUAN S W, LIU C, et al. Neuroprotective effects of Coptis chinensis Franch polysaccharide on amyloid-beta (Aβ)-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer's disease (AD)[J]. Int J Biol Macromol, 2018, 113: 991-995.
LI Y J, WANG B M, LIU C, et al. Inhibiting c-Jun N-terminal kinase (JNK)-mediated apoptotic signaling pathway in PC12 cells by a polysaccharide (CCP) from Coptis chinensis against amyloid-β (Aβ)-induced neurotoxicity[J]. Int J Biol Macromol, 2019, 134:565-574.
CHEN J C, LI L, ZHANG X, et al. Structural characteristics and antioxidant and hypoglycemic activities of a heteropolysaccharide from Anemarrhena asphodeloides Bunge[J]. Int J Biol Macromol, 2023, 236: 123843.
ZHANG S Z, ZHANG Q, AN L J, et al. A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects[J]. Carbohydr Polym, 2020, 229: 115477.
SU C, LI N, REN R R, et al. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum[J]. Molecules, 2021, 26(20): 6249.
JIA D, RAO C G, XUE S X, et al. Purification, characterization and neuroprotective effects of a polysaccharide from Gynostemma pentaphyllum[J]. Carbohydr Polym, 2015, 122: 93-100.
ABE N, NISHIHARA T, YOROZUYA T, et al. Microglia and macrophages in the pathological central and peripheral nervous systems[J]. Cells, 2020, 9(9): E2132.
ZHANG F H, WANG Z M, LIU Y T, et al. Bioactivities of serotonin transporter mediate antidepressant effects of Acorus tatarinowii Schott[J]. J Ethnopharmacol, 2019, 241: 111967.
XU M J, YAN T X, FAN K Y, et al. Polysaccharide of Schisandra Chinensis Fructus ameliorates cognitive decline in a mouse model of Alzheimer's disease[J]. J Ethnopharmacol, 2019, 237: 354-365.
XU M J, WANG J Y, ZHANG X Y, et al. Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling[J]. J Ethnopharmacol, 2020, 256: 112798.
CHEN Q L, TANG H L, ZHA Z Q, et al. β-D-glucan from Antrodiacamphorata ameliorates LPS-induced inflammation and ROS production in human hepatocytes[J]. Int J Biol Macromol, 2017, 104: 768-777.
GARIBOLDI M B, MARRAS E, FERRARIO N, et al. Anti-cancer potential of edible/medicinal mushrooms in breast cancer[J]. Int J Mol Sci, 2023, 24(12): 10120.
HAN C Y, GUO L, YANG Y, et al. Study on Antrodiacamphorata polysaccharide in alleviating the neuroethology of PD mice by decreasing the expression of NLRP3 inflammasome[J]. Phytother Res, 2019, 33(9): 2288-2297.
HAN C Y, SHEN H P, YANG Y, et al. Antrodiacamphorata polysaccharide resists 6-OHDA-induced dopaminergic neuronal damage by inhibiting ROS-NLRP3 activation[J]. Brain Behav, 2020, 10(11): e01824.
ARMADA-MOREIRA A, GOMES J I, PINA C C, et al. Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases[J]. Front Cell Neurosci, 2020, 14: 90.
KOU L, DU M Z, ZHANG C P, et al. Polysaccharide purified from Lycium barbarum protects differentiated PC12 cells against L-Glu-induced toxicity via the mitochondria-associated pathway[J]. Mol Med Rep, 2017, 16(4): 5533-5540.
YANG Y, LI J H, HONG Q, et al. Polysaccharides from Hericium erinaceus fruiting bodies: structural characterization, immunomodulatory activity and mechanism[J]. Nutrients, 2022, 14(18): 3721.
ZHANG J R, AN S S, HU W J, et al. The neuroprotective properties of Hericium erinaceus in glutamate-damaged differentiated PC12 cells and an Alzheimer's disease mouse model[J]. Int J Mol Sci, 2016, 17(11): E1810.
FENTON T M, JØRGENSEN P B, NISS K, et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity[J]. Immunity, 2020, 52(3): 557-570.
LI S, HU J L, YAO H Y Y, et al. Interaction between four galactans with different structural characteristics and gut microbiota[J]. Crit Rev Food Sci Nutr, 2023, 63(19): 3653-3663.
ZHU Y Y, DONG L E, HUANG L, et al. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats[J]. J Funct Foods, 2020, 69: 103939.
HUANG J Q, WANG Q, XU Q X, et al. In vitro fermentation of O-acetyl-arabinoxylan from bamboo shavings by human colonic microbiota[J]. Int J Biol Macromol, 2019, 125: 27-34.
FENG H B, FAN J, SONG Z H, et al. Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides[J]. Carbohydr Polym, 2016, 136: 803-811.
WANG C Y, TANG L, HE J W, et al. Ethnobotany, phytochemistry and pharmacological properties of Eucommia ulmoides: a review[J]. Am J Chin Med, 2019, 47(2): 259-300.
SUN P H, WANG M L, LI Z N, et al. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism[J]. Theranostics, 2022, 12(8): 3637-3655.
SHENG K J, WANG C L, CHEN B T, et al. Recent advances in polysaccharides from Lentinus edodes (Berk.): isolation, structures and bioactivities[J]. Food Chem, 2021, 358: 129883.
GUO T Y, AKAN O D, LUO F J, et al. Dietary polysaccharides exert biological functions via epigenetic regulations: advance and prospectives[J]. Crit Rev Food Sci Nutr, 2023, 63(1): 114-124.
... 棘托竹荪菌是一种食用菌,其抗肿瘤、抗增殖、抗氧化等生物活性在不同的模型中均得到了验证.棘托竹荪菌多糖(Dictyophora echinovolvata polysaccharide,DEVP)是通过棘托竹荪菌蒸馏提取等一系列步骤获得的以α糖苷键连接为主的吡喃型糖[19].大鼠嗜铬细胞瘤(PC12)细胞系是神经科学研究中常用的细胞系之一,故研究者主要利用H2O2诱导的PC12细胞模型研究了DEVP的神经保护作用及其可能的机制.YU等[20]发现,DEVP可抑制H2O2诱导的细胞神经毒性,逆转H2O2诱导的细胞形态变化和细胞内ROS聚集.此外,BCL-2相关X蛋白(BCL-2 associated X protein,BAX)、裂解胱天蛋白酶3(caspase-3)、细胞色素C和BCL-2蛋白表达水平的改变进一步表明DEVP通过抑制线粒体凋亡途径发挥神经保护作用.因此,DEVP可能是通过对抗氧化应激和凋亡来预防神经疾病发生的潜在候选物质. ...
1
... 棘托竹荪菌是一种食用菌,其抗肿瘤、抗增殖、抗氧化等生物活性在不同的模型中均得到了验证.棘托竹荪菌多糖(Dictyophora echinovolvata polysaccharide,DEVP)是通过棘托竹荪菌蒸馏提取等一系列步骤获得的以α糖苷键连接为主的吡喃型糖[19].大鼠嗜铬细胞瘤(PC12)细胞系是神经科学研究中常用的细胞系之一,故研究者主要利用H2O2诱导的PC12细胞模型研究了DEVP的神经保护作用及其可能的机制.YU等[20]发现,DEVP可抑制H2O2诱导的细胞神经毒性,逆转H2O2诱导的细胞形态变化和细胞内ROS聚集.此外,BCL-2相关X蛋白(BCL-2 associated X protein,BAX)、裂解胱天蛋白酶3(caspase-3)、细胞色素C和BCL-2蛋白表达水平的改变进一步表明DEVP通过抑制线粒体凋亡途径发挥神经保护作用.因此,DEVP可能是通过对抗氧化应激和凋亡来预防神经疾病发生的潜在候选物质. ...
1
... 美洲蜂鸣花是一种原产于北美的草本植物,在美国和日本广泛种植,其营养丰富的块茎是北美土著居民的主食并且可以增强机体免疫力[21].CHU等[22]从美洲蜂鸣花中提取了美洲蜂鸣花多糖(Apios americana Medik flowers polysaccharide,AFP-2),分析出其主要是由甘露糖(2.53%)、鼠李糖(4.62%)、葡萄糖醛酸(4.87%)、半乳糖醛酸(6.09%)、葡萄糖(3.62%)、阿拉伯糖(49.46%)以及果糖(28.81%)组成;体外实验表明,AFP-2通过沉寂信息调节因子1(silent information regulator 1,SIRT1)/NRF2信号通路激活细胞内抗氧化系统,有效减轻H2O2引起的ROS积累和线粒体功能障碍;并在分子水平上发现自噬参与了H2O2诱导的PC12细胞中AFP-2的抗氧化过程.此外,该研究显示,AFP-2可通过抑制AKT/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路的磷酸化激活自噬.综上所述,AFP-2是一种有效的抗氧化剂,具有潜在的神经保护作用. ...
1
... 美洲蜂鸣花是一种原产于北美的草本植物,在美国和日本广泛种植,其营养丰富的块茎是北美土著居民的主食并且可以增强机体免疫力[21].CHU等[22]从美洲蜂鸣花中提取了美洲蜂鸣花多糖(Apios americana Medik flowers polysaccharide,AFP-2),分析出其主要是由甘露糖(2.53%)、鼠李糖(4.62%)、葡萄糖醛酸(4.87%)、半乳糖醛酸(6.09%)、葡萄糖(3.62%)、阿拉伯糖(49.46%)以及果糖(28.81%)组成;体外实验表明,AFP-2通过沉寂信息调节因子1(silent information regulator 1,SIRT1)/NRF2信号通路激活细胞内抗氧化系统,有效减轻H2O2引起的ROS积累和线粒体功能障碍;并在分子水平上发现自噬参与了H2O2诱导的PC12细胞中AFP-2的抗氧化过程.此外,该研究显示,AFP-2可通过抑制AKT/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路的磷酸化激活自噬.综上所述,AFP-2是一种有效的抗氧化剂,具有潜在的神经保护作用. ...
... 五味子是一种常用于治疗健忘或痴呆的传统中药.五味子多糖(Schisandra chinensis polysaccharide,SCP)是五味子成熟果实中的主要生物活性成分,主要成分为甘露糖、鼠李糖、葡萄糖醛酸、葡萄糖、半乳糖和阿拉伯糖.在AD动物模型中,SCP改善了AD小鼠的认知能力,降低了促炎细胞因子的水平,并抑制了海马中星形胶质细胞和小胶质细胞的激活[44].SCP的抗AD作用,主要是通过激活NF-κB/MAPK通路来缓解神经炎症.XU等[45]从SCP中分离纯化得到了均质杂多糖SCP2-1,并通过体外实验证明SCP2-1主要通过上调低密度脂蛋白受体相关蛋白1(low density lipoprotein receptor-related protein 1,LRP-1),抑制NF-κB和JNK通路的过度激活,逆转LPS诱导的小胶质细胞极化.该研究通过体内实验利用LPS诱导的小鼠模型检测其对小胶质细胞活化和神经炎症的影响,结果表明SCP2-1可改善LPS诱导的小鼠认知功能障碍和神经炎症.结合以上研究结果,提示SCP具有抗神经炎作用. ...
1
... 五味子是一种常用于治疗健忘或痴呆的传统中药.五味子多糖(Schisandra chinensis polysaccharide,SCP)是五味子成熟果实中的主要生物活性成分,主要成分为甘露糖、鼠李糖、葡萄糖醛酸、葡萄糖、半乳糖和阿拉伯糖.在AD动物模型中,SCP改善了AD小鼠的认知能力,降低了促炎细胞因子的水平,并抑制了海马中星形胶质细胞和小胶质细胞的激活[44].SCP的抗AD作用,主要是通过激活NF-κB/MAPK通路来缓解神经炎症.XU等[45]从SCP中分离纯化得到了均质杂多糖SCP2-1,并通过体外实验证明SCP2-1主要通过上调低密度脂蛋白受体相关蛋白1(low density lipoprotein receptor-related protein 1,LRP-1),抑制NF-κB和JNK通路的过度激活,逆转LPS诱导的小胶质细胞极化.该研究通过体内实验利用LPS诱导的小鼠模型检测其对小胶质细胞活化和神经炎症的影响,结果表明SCP2-1可改善LPS诱导的小鼠认知功能障碍和神经炎症.结合以上研究结果,提示SCP具有抗神经炎作用. ...
1
... 牛樟芝是我国台湾地区特有的一种多孔真菌,富含多糖、萜类、类固醇和其他生物活性物质.研究者用培养的牛樟芝粉,经化学提取、分离和纯化后,得到一种多糖,命名为牛樟芝多糖(Antrodia camphorata polysaccharide,ACP).ACP的相对分子质量为1.72×104,由葡萄糖和半乳糖组成,物质的量之比为2.21∶1[46].研究证实ACP具有抗肿瘤活性[47]和抗神经炎作用[48].在6-羟多巴胺(6-hydroxydopamine,6-OHDA)诱导的PD小鼠模型中,经ACP干预,小鼠的运动症状得到改善,并显著抑制NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症体及其下游炎症因子的表达[48].ACP通过抑制ROS/NLRP3信号通路,表现出神经保护作用[48-49].虽然ACP的组成和结构特征有待进一步研究,但研究结果提示ACP有改善PD患者运动症状的潜力. ...
1
... 牛樟芝是我国台湾地区特有的一种多孔真菌,富含多糖、萜类、类固醇和其他生物活性物质.研究者用培养的牛樟芝粉,经化学提取、分离和纯化后,得到一种多糖,命名为牛樟芝多糖(Antrodia camphorata polysaccharide,ACP).ACP的相对分子质量为1.72×104,由葡萄糖和半乳糖组成,物质的量之比为2.21∶1[46].研究证实ACP具有抗肿瘤活性[47]和抗神经炎作用[48].在6-羟多巴胺(6-hydroxydopamine,6-OHDA)诱导的PD小鼠模型中,经ACP干预,小鼠的运动症状得到改善,并显著抑制NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症体及其下游炎症因子的表达[48].ACP通过抑制ROS/NLRP3信号通路,表现出神经保护作用[48-49].虽然ACP的组成和结构特征有待进一步研究,但研究结果提示ACP有改善PD患者运动症状的潜力. ...
3
... 牛樟芝是我国台湾地区特有的一种多孔真菌,富含多糖、萜类、类固醇和其他生物活性物质.研究者用培养的牛樟芝粉,经化学提取、分离和纯化后,得到一种多糖,命名为牛樟芝多糖(Antrodia camphorata polysaccharide,ACP).ACP的相对分子质量为1.72×104,由葡萄糖和半乳糖组成,物质的量之比为2.21∶1[46].研究证实ACP具有抗肿瘤活性[47]和抗神经炎作用[48].在6-羟多巴胺(6-hydroxydopamine,6-OHDA)诱导的PD小鼠模型中,经ACP干预,小鼠的运动症状得到改善,并显著抑制NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症体及其下游炎症因子的表达[48].ACP通过抑制ROS/NLRP3信号通路,表现出神经保护作用[48-49].虽然ACP的组成和结构特征有待进一步研究,但研究结果提示ACP有改善PD患者运动症状的潜力. ...