1 |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
|
2 |
Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012—2016[J]. Neuro Oncol, 2019, 21(): v1-v100.
|
3 |
Hoffman LM, Veldhuijzen van Zanten SEM, Colditz N, et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and European society for pediatric oncology DIPG registries[J]. J Clin Oncol, 2018, 36(19): 1963-1972.
|
4 |
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets[J]. Curr Opin Oncol, 2019, 31(6): 522-530.
|
5 |
Zhang X, Zhang Z. Oncohistone mutations in diffuse intrinsic pontine glioma[J]. Trends Cancer, 2019, 5(12): 799-808.
|
6 |
Warren KE. Diffuse intrinsic pontine glioma: poised for progress[J]. Front Oncol, 2012, 2: 205.
|
7 |
Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349.
|
8 |
Nagaraja S, Vitanza NA, Woo PJ, et al. Transcriptional dependencies in diffuse intrinsic pontine glioma[J]. Cancer Cell, 2017, 31(5): 635-652.e6.
|
9 |
Grasso C, Tang Y, Truffaux N, et al. Functionally-defined therapeutic targets in diffuse intrinsic pontine glioma[J]. Nat Med, 2015, 21(6): 555-559.
|
10 |
Borrelli EP, McGladrigan CG. Differences in safety profiles of newly approved medications for multiple myeloma in real-world settings versus randomized controlled trials[J]. J Oncol Pharm Pract, 2020: 1078155220941937.
|
11 |
Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: the example of lymphomas[J]. Pharmacol Ther, 2020, 215: 107631.
|
12 |
Altieri DC. Survivin, cancer networks and pathway-directed drug discovery[J]. Nat Rev Cancer, 2008, 8(1): 61-70.
|
13 |
Kim YH, Kim SM, Kim YK, et al. Evaluation of survivin as a prognostic marker in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2010, 39(5): 368-375.
|
14 |
Kelly RJ, Thomas A, Rajan A, et al. A phase Ⅰ/Ⅱ study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer[J]. Ann Oncol, 2013, 24(10): 2601-2606.
|
15 |
Tolcher AW, Quinn DI, Ferrari A, et al. A phase Ⅱ study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer[J]. Ann Oncol, 2012, 23(4): 968-973.
|
16 |
Dahl NA, Danis E, Balakrishnan I, et al. Super elongation complex as a targetable dependency in diffuse midline glioma[J]. Cell Rep, 2020, 31(1): 107485.
|
17 |
Chou TC. The combination index (CI<1) as the definition of synergism and of synergy claims[J]. Synergy, 2018, 7: 49-50.
|
19 |
Lin GL, Wilson KM, Ceribelli M, et al. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening[J]. Sci Transl Med, 2019, 11(519): eaaw0064.
|
18 |
Tse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor[J]. Cancer Res, 2008, 68(9): 3421-3428.
|
20 |
Siddiqui-Jain A, Drygin D, Streiner N, et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy[J]. Cancer Res, 2010, 70(24): 10288-10298.
|
21 |
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer[J]. Semin Cancer Biol, 2015, 31: 65-75.
|
22 |
Schramm K, Iskar M, Statz B, et al. DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas[J]. Neuro Oncol, 2019, 21(7): 867-877.
|
23 |
Fortin J, Tian RX, Zarrabi I, et al. Mutant ACVR1 arrests glial cell differentiation to drive tumorigenesis in pediatric gliomas[J]. Cancer Cell, 2020, 37(3): 308-323.e12.
|
24 |
Koncar RF, Dey BR, Stanton AJ, et al. Identification of novel RAS signaling therapeutic vulnerabilities in diffuse intrinsic pontine gliomas[J]. Cancer Res, 2019, 79(16): 4026-4041.
|
25 |
Larson JD, Kasper LH, Paugh BS, et al. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression[J]. Cancer Cell, 2019, 35(1): 140-155.e7.
|
26 |
Batool S, Raza H, Zaidi J, et al. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders[J]. J Neurophysiol, 2019, 121(4): 1381-1397.
|
27 |
Friedmann-Morvinski D, Bushong EA, Ke E, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice[J]. Science, 2012, 338(6110): 1080-1084.
|
28 |
Filbin MG, Tirosh I, Hovestadt V, et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq[J]. Science, 2018, 360(6386): 331-335.
|
29 |
Iwagawa T, Watanabe S. Molecular mechanisms of H3K27me3 and H3K4me3 in retinal development[J]. Neurosci Res, 2019, 138: 43-48.
|
30 |
Deaton AM, Bird A. CpG islands and the regulation of transcription[J]. Genes Dev, 2011, 25(10): 1010-1022.
|
31 |
Lin GL, Wilson KM, Ceribelli M, et al. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening[J]. Sci Transl Med, 2019, 11(519): eaaw0064.
|
32 |
van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment[J]. Drug Resist Updat, 2015, 19: 1-12.
|
33 |
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41.
|
34 |
Minematsu T, Sonoda T, Hashimoto T, et al. Pharmacokinetics, distribution and excretion of YM155 monobromide, a novel small-molecule survivin suppressant, in male and pregnant or lactating female rats[J]. Biopharm Drug Dispos, 2012, 33(3): 160-169.
|
35 |
Cheng ZX, Gong YY, Ma YF, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma[J]. Clin Cancer Res, 2013, 19(7): 1748-1759.
|
36 |
Matzuk MM, McKeown MR, Filippakopoulos P, et al. Small-molecule inhibition of BRDT for male contraception[J]. Cell, 2012, 150(4): 673-684.
|
37 |
Allard E, Passirani C, Benoit JP. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors[J]. Biomaterials, 2009, 30(12): 2302-2318.
|
38 |
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma[J]. Neuro Oncol, 2015, 17(): ii3-ii8.
|
39 |
Souweidane MM, Kramer K, Pandit-Taskar N, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial[J]. Lancet Oncol, 2018, 19(8): 1040-1050.
|
40 |
Luther N, Zhou ZP, Zanzonico P, et al. The potential of theragnostic ¹²⁴I-8H9 convection-enhanced delivery in diffuse intrinsic pontine glioma[J]. Neuro Oncol, 2014, 16(6): 800-806.
|