1 |
NUSSINOV R, TSAI C J, JANG H. Anticancer drug resistance: an update and perspective[J]. Drug Resist Updat, 2021, 59: 100796.
|
2 |
LIN Y X, WANG Y, DING J X, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models[J]. Sci Transl Med, 2021, 13(599): eaba9772.
|
3 |
GAO P, HAO J L, XIE Q W, et al. PELO facilitates PLK1-induced the ubiquitination and degradation of Smad4 and promotes the progression of prostate cancer[J]. Oncogene, 2022, 41(21): 2945-2957.
|
4 |
LIU W W, XU L, WANG X, et al. PRDX1 activates autophagy via the PTEN-AKT signaling pathway to protect against cisplatin-induced spiral ganglion neuron damage[J]. Autophagy, 2021, 17(12): 4159-4181.
|
5 |
ÁLVAREZ-GARCIA V, TAWIL Y, WISE H M, et al. Mechanisms of PTEN loss in cancer: it′s all about diversity[J]. Semin Cancer Biol, 2019, 59: 66-79.
|
6 |
BYRNES K, BLESSINGER S, BAILEY N T, et al. Therapeutic regulation of autophagy in hepatic metabolism[J]. Acta Pharm Sin B, 2022, 12(1): 33-49.
|
7 |
FENG J W, DANG Y P, ZHANG W Q, et al. PTEN arginine methylation by PRMT6 suppresses PI3K-AKT signaling and modulates pre-mRNA splicing[J]. Proc Natl Acad Sci U S A, 2019, 116(14): 6868-6877.
|
8 |
PENG Q, ZHOU Y J, OYANG L, et al. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics[J]. Mol Ther, 2022, 30(3): 1018-1035.
|
9 |
FRANKIW L, BALTIMORE D, LI G D. Alternative mRNA splicing in cancer immunotherapy[J]. Nat Rev Immunol, 2019, 19(11): 675-687.
|
10 |
WANG K, DAI X Y, YU A, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression[J]. J Exp Clin Cancer Res, 2022, 41(1): 289.
|
11 |
VANGENDEREN C, HARKNESS T A A, ARNASON T G. The role of anaphase promoting complex activation, inhibition and substrates in cancer development and progression[J]. Aging, 2020, 12(15): 15818-15855.
|
12 |
HU G H, YAN Z W, ZHANG C, et al. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression[J]. J Exp Clin Cancer Res, 2019, 38(1): 188.
|
13 |
NAKAMURA S, HIRANO I, OKINAKA K, et al. The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia[J]. Carcinogenesis, 2010, 31(11): 2012-2021.
|
14 |
RATHER T B, PARVEIZ I, BHAT G A, et al. Evaluation of forkhead box M1 (FOXM1) gene expression in colorectal cancer[J]. Clin Exp Med, 2023, 23(6): 2385-2405.
|
15 |
LI S K M, SMITH D K, LEUNG W Y, et al. FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression[J]. J Biol Chem, 2008, 283(24): 16545-16553.
|
16 |
NILSSON M B, SUN H Y, ROBICHAUX J, et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components[J]. Sci Transl Med, 2020, 12(559): eaaz4589.
|
17 |
SHEN S M, JI Y, ZHANG C, et al. Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role[J]. Nat Commun, 2018, 9(1): 2392.
|
18 |
MATSUSHITA M, FUJITA K, HAYASHI T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling[J]. Cancer Res, 2021, 81(15): 4014-4026.
|
19 |
KORVER W, ROOSE J, CLEVERS H. The winged-helix transcription factor Trident is expressed in cycling cells[J]. Nucleic Acids Res, 1997, 25(9): 1715-1719.
|
20 |
BARGER C J, ZHANG W, HILLMAN J, et al. Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression[J]. Oncotarget, 2015, 6(29): 27613-27627.
|
21 |
TASSI R A, TODESCHINI P, SIEGEL E R, et al. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients[J]. J Exp Clin Cancer Res, 2017, 36(1): 63.
|
22 |
BU H T, TANG S S, LIU G T, et al. In silico, in vitro and in vivo studies: dibutyl phthalate promotes prostate cancer cell proliferation by activating Forkhead Box M1 and remission after Natura-α pretreatment[J]. Toxicology, 2023, 488: 153465.
|
23 |
MADHI H, LEE J S, CHOI Y E, et al. FOXM1 inhibition enhances the therapeutic outcome of lung cancer immunotherapy by modulating PD-L1 expression and cell proliferation[J]. Adv Sci (Weinh), 2022, 9(29): e2202702.
|
24 |
SHER G, MASOODI T, PATIL K, et al. Dysregulated FOXM1 signaling in the regulation of cancer stem cells[J]. Semin Cancer Biol, 2022, 86(Pt 3): 107-121.
|
25 |
KELLEHER F C, O′SULLIVAN H. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways[J]. Oncotarget, 2016, 7(27): 42792-42804.
|
26 |
CHEN W, SHIMANE T, KAWANO S, et al. Human papillomavirus 16 E6 induces FoxM1B in oral keratinocytes through GRHL2[J]. J Dent Res, 2018, 97(7): 795-802.
|
27 |
HUANG C, XIE D C, CUI J J, et al. FOXM1c promotes pancreatic cancer epithelial-to-mesenchymal transition and metastasis via upregulation of expression of the urokinase plasminogen activator system[J]. Clin Cancer Res, 2014, 20(6): 1477-1488.
|
28 |
LOK G T M, CHAN D W, LIU V W S, et al. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells[J]. PLoS One, 2011, 6(8): e23790.
|
29 |
ZHOU Y Z, WANG Q, CHU L, et al. FOXM1c promotes oesophageal cancer metastasis by transcriptionally regulating IRF1 expression[J]. Cell Prolif, 2019, 52(2): e12553.
|
30 |
TAYLOR B S, SCHULTZ N, HIERONYMUS H, et al. Integrative genomic profiling of human prostate cancer[J]. Cancer Cell, 2010, 18(1): 11-22.
|