1 |
Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update[J]. Eur J Cancer, 1998, 34(10): 1522-1534.
|
2 |
Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury[J]. Biomed Res Int, 2014, 2014: 967826.
|
3 |
Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury[J]. Int J Mol Sci, 2019, 20(12): 3011.
|
4 |
Yimit A, Adebali O, Sancar A, et al. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs[J]. Nat Commun, 2019, 10: 309.
|
5 |
Zuk A, Bonventre JV. Acute kidney injury[J]. Annu Rev Med, 2016, 67(1): 293-307.
|
6 |
Sahu BD, Mahesh Kumar J, R.Baicalein Sistla, bioflavonoida, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defenses and down-regulating the MAPKs and NF-κB pathways[J]. PLoS One, 2015, 10(7): e0134139.
|
7 |
Csepany T, Lin A, Baldick CJ, et al. Sequence specificity of mRNA N6-adenosine methyltransferase[J]. J Biol Chem, 1990, 265(33): 20117-20122.
|
8 |
Lichinchi G, Gao S, Saletore Y, et al. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells[J]. Nat Microbiol, 2016, 1: 16011.
|
9 |
Spitale RC, Flynn RA, Zhang QC, et al. Structural imprints in vivo decode RNA regulatory mechanisms[J]. Nature, 2015, 519(7544): 486-490.
|
10 |
Wang Y, Li Y, Toth JI, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nat Cell Biol, 2014, 16(2): 191-198.
|
11 |
Wang J, Ishfaq M, Xu L, et al. METTL3/m6A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating Keap1/Nrf2 pathway[J]. Front Pharmacol, 2019, 10: 517.
|
12 |
Zhou PH, Wu M, Ye CY, et al. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m6A abrogation in RNA[J]. J Biol Chem, 2019, 294(45): 16908-16917.
|
13 |
Xu Y, Yuan XD, Wu JJ, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1[J]. J Cell Biochem, 2020, 121(1): 524-533.
|
14 |
Leemans JC, Stokman G, Claessen N, et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney[J]. J Clin Invest, 2005, 115(10): 2894-2903.
|
15 |
Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138.
|
16 |
Zhou J, Wan J, Gao X, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574): 591-594.
|
17 |
Li HB, Tong J, Zhu S, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342.
|
18 |
Fry NJ, Law BA, Ilkayeva OR, et al. N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs[J]. RNA, 2017, 23(9): 1444-1455.
|
19 |
Wang Y, Mao J, Wang X, et al. Genome-wide screening of altered m6A-tagged transcript profiles in the hippocampus after traumatic brain injury in mice[J]. Epigenomics, 2019, 11(7): 805-819.
|
20 |
Luo Z, Zhang Z, Tai L, et al. Comprehensive analysis of differences of N6-methyladenosine RNA methylomes between high-fat-fed and normal mouse livers[J]. Epigenomics, 2019, 11(11): 1267-1282.
|
21 |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
|
22 |
Vilar R, Fish RJ, Casini A, et al. Fibrin(ogen) in human disease: both friend and foe[J]. Haematologica, 2020, 105(2): 284-296.
|
23 |
Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646.
|
24 |
Riccioni G, Gammone M, Currenti W, et al. Effectiveness and safety of dietetic supplementation of a new nutraceutical on lipid profile and serum inflammation biomarkers in hypercholesterolemic patients[J]. Molecules, 2018, 23(5): 1168.
|
25 |
Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters[J]. Pflugers Arch, 2014, 466(1): 91-105.
|
26 |
Martini F, Cecconi N, Paolicchi A, et al. Interference of monoclonal gammopathy with fibrinogen assay producing spurious dysfibrinogenemia[J]. TH Open, 2019, 3(1): e64-e66.
|
27 |
Hao S, Hao M, Ferreri NR. Renal-specific silencing of TNF (tumor necrosis factor) unmasks salt-dependent increases in blood pressure via an NKCC2A (Na+-K+-2Cl- cotransporter isoform A)-dependent mechanism[J]. Hypertension, 2018, 71(6): 1117-1125.
|
28 |
Zdziechowska M, Gluba-Brzózka A, Franczyk B, et al. Biochemical markers in the prediction of contrast-induced acute kidney injury[J]. Curr Med Chem, 2021, 28(6): 1234-1250.
|
29 |
Lippi I, Perondi F, Meucci V, et al. Clinical utility of urine kidney injury molecule-1 (KIM-1) and gamma-glutamyl transferase (GGT) in the diagnosis of canine acute kidney injury[J]. Vet Res Commun, 2018, 42(2): 95-100.
|
30 |
Yang L, Brooks CR, Xiao S, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney[J]. J Clin Invest, 2015, 125(4): 1620-1636.
|
31 |
Song J, Yu J, Prayogo GW, et al. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology[J]. Am J Transl Res, 2019, 11(3): 1219-1229.
|