1 |
WOOD S L, PERNEMALM M, CROSBIE P A, et al. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets[J]. Cancer Treat Rev, 2014, 40(4): 558-566.
|
2 |
LUO R J, LI Y, HE M, et al. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations[J]. Int J Pharm, 2017, 519(1/2): 1-10.
|
3 |
HERBST R S, MORGENSZTERN D, BOSHOFF C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454.
|
4 |
SHENDE P, KASTURE P, GAUD R S. Nanoflowers: the future trend of nanotechnology for multi-applications[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1): 413-422.
|
5 |
MEI L, ZHU G Z, QIU L P, et al. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery[J]. Nano Res, 2015, 8(11): 3447-3460.
|
6 |
MICHIELS C, TELLIER C, FERON O. Cycling hypoxia: a key feature of the tumor microenvironment[J]. Biochim Biophys Acta, 2016, 1866(1): 76-86.
|
7 |
NAKAZAWA M S, KEITH B, SIMON M C. Oxygen availability and metabolic adaptations[J]. Nat Rev Cancer, 2016, 16(10): 663-673.
|
8 |
JAHANBAN-ESFAHLAN R, DE LA GUARDIA M, AHMADI D, et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy[J]. J Cell Physiol, 2018, 233(3): 2019-2031.
|
9 |
CHEN Q, LIANG C, SUN X Q, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay[J]. Proc Natl Acad Sci USA, 2017, 114(21): 5343-5348.
|
10 |
GHOSH S, JAVIA A, SHETTY S, et al. Triple negative breast cancer and non-small cell lung cancer: clinical challenges and nano-formulation approaches[J]. J Control Release, 2021, 337: 27-58.
|
11 |
DHIMAN N, AWASTHI R, SHARMA B, et al. Lipid nanoparticles as carriers for bioactive delivery[J]. Front Chem, 2021, 9: 580118.
|
12 |
LV J, DONG Y, GU Z, et al. Programmable DNA nanoflowers for biosensing, bioimaging, and therapeutics[J]. Chemistry, 2020, 26(64): 14512-14524.
|
13 |
YAN Y C, LI J, LI W H, et al. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification[J]. Nanoscale, 2018, 10(47): 22456-22465.
|
14 |
PAN M, JIANG Q Y, SUN J L, et al. Programming DNA nanoassembly for enhanced photodynamic therapy[J]. Angew Chem Int Ed Engl, 2020, 59(5): 1897-1905.
|
15 |
ZHANG K X, LIU J J, SONG Q L, et al. DNA nanosponge for adsorption and clearance of intracellular miR-21 and enhanced antitumor chemotherapy[J]. ACS Appl Mater Interfaces, 2019, 11(50): 46604-46613.
|
16 |
JING X M, YANG F M, SHAO C C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 157.
|
17 |
PARK J H, MOON M, KIM J S, et al. TOPK mediates hypoxia-induced epithelial-mesenchymal transition and the invasion of nonsmall-cell lung cancer cells via the HIF-1α/snail axis[J]. Biochem Biophys Res Commun, 2021, 534: 941-949.
|
18 |
FANG J, NAKAMURA H, MAEDA H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect[J]. Adv Drug Deliv Rev, 2011, 63(3): 136-151.
|
19 |
KIM E, ZWI-DANTSIS L, REZNIKOV N, et al. One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery[J]. Adv Mater, 2017, 29(26): 10.1002/adma.201701086.
|