上海交通大学学报(医学版) ›› 2022, Vol. 42 ›› Issue (8): 1024-1033.doi: 10.3969/j.issn.1674-8115.2022.08.007
• 论著 · 基础研究 • 上一篇
收稿日期:
2022-04-01
接受日期:
2022-07-01
出版日期:
2022-08-19
发布日期:
2022-08-19
通讯作者:
黄雷
E-mail:yunkaichu@126.com;leihuang@shsmu.edu.cn
作者简介:
褚云开(1996—),男,硕士生;电子信箱:yunkaichu@126.com。
基金资助:
CHU Yunkai(), LIAO Chunhua, DENG Huayun, HUANG Lei(
)
Received:
2022-04-01
Accepted:
2022-07-01
Online:
2022-08-19
Published:
2022-08-19
Contact:
HUANG Lei
E-mail:yunkaichu@126.com;leihuang@shsmu.edu.cn
Supported by:
摘要:
目的·研究黏蛋白1(mucin1,MUC1)在不同肿瘤组织中的表达水平及其对患者生存期的影响;通过分析与MUC1存在相互作用的肿瘤相关蛋白的调控网络,预测MUC1参与肿瘤发生发展的可能机制。方法·使用GEPIA 2在线平台对MUC1在33种肿瘤中的mRNA水平,以及其与患者生存期的关系进行分析。在HEK293T细胞中转染MUC1-HA质粒,用HA抗体进行免疫共沉淀(co-immunoprecipitation,Co-IP)实验,对MUC1结合蛋白进行液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LCMS/MS)分析。使用String 11.5在线平台对MUC1结合蛋白的亚细胞定位、分子功能、涉及的疾病、参与的生物学过程以及这些蛋白之间的相互作用调控网络进行分析。结果·MUC1在乳腺癌、宫颈癌、弥漫性大B细胞瘤、多发性胶质细胞瘤、低级别脑胶质瘤、卵巢癌、胰腺癌、胸腺癌和子宫内膜癌等9种肿瘤中高表达;对这9种肿瘤中MUC1表达与生存期的关系分析发现,MUC1表达与生存期呈负相关,其中在乳腺癌、宫颈癌、多发性胶质细胞瘤、低级别脑胶质瘤、胰腺癌和胸腺癌等6种肿瘤中具有统计学意义。质谱分析共检测到526个MUC1结合蛋白,这些蛋白定位于细胞器、细胞质和膜结构最多;主要分子功能包括蛋白结合、离子结合和酶活性等;涉及的疾病有解剖实体性疾病、细胞增殖性疾病、代谢性疾病和癌症等;参与的生物学过程主要包括细胞应激、代谢、发育和生物合成等。MUC1结合蛋白主要参与代谢、癌症、cGMP-依赖cGMP的蛋白激酶(cGMP-dependent protein kinase,PKG)、肿瘤坏死因子(tumor necrosis factor,TNF)和细胞周期等信号通路;深入分析后发现,MUC1结合蛋白一方面大量参与到Wnt/β-catenin、Notch和cAMP等癌症相关信号通路,另一方面通过调控代谢、凋亡和细胞周期促进肿瘤的发生发展。结论·MUC1在多种肿瘤组织中高表达并与患者预后不良相关;MUC1通过蛋白相互作用参与调控细胞代谢和肿瘤相关信号通路。该研究创新性地发现多个新的MUC1结合蛋白,可为进一步研究MUC1生物学新功能奠定基础。
中图分类号:
褚云开, 廖春华, 邓华云, 黄雷. 黏蛋白1与肿瘤相关蛋白的调控网络研究[J]. 上海交通大学学报(医学版), 2022, 42(8): 1024-1033.
CHU Yunkai, LIAO Chunhua, DENG Huayun, HUANG Lei. Study of the regulatory network of MUC1 and tumor-associated proteins[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1024-1033.
图1 MUC1 在不同肿瘤组织中的转录水平Note: Red indicates high expression of MUC1. Green indicates low expression of MUC1. Black indicates no significant difference. T—tumor tissue. N—normal tissue.CHOL—cholangiocarcinoma; COAD—colon adenocarcinoma; ESCA—esophageal carcinoma; HNSC—head and neck squamous cell carcinoma; KICH—kidney chromophobe; KIRC—kidney renal clear cell carcinoma; KIRP—kidney renal papillary cell carcinoma; LAML—acute myeloid leukemia; LIHC—liver hepatocellular carcinoma; LUAD—lung adenocarcinoma; LUSC—lung squamous cell carcinoma; MESO—mesothelioma; PCPG—pheochromocytoma and paraganglioma; PRAD—prostate adenocarcinoma; READ—rectum adenocarcinoma; SARC—sarcoma; SKCM—skin cutaneous melanoma; STAD—stomach adenocarcinoma; TGCT—testicular germ cell tumors; THCA—thyroid carcinoma; UCS—uterine carcinosarcoma; UVM—uveal melanoma.
Fig 1 Transcription levels of MUC1 in different tumor tissues
图3 MUC1结合蛋白的亚细胞定位和分子功能分析Note:A. Subcellular localization of MUC1-binding proteins. B. Molecular function of MUC1-binding proteins.
Fig 3 Subcellular localization and molecular function of MUC1-binding proteins
图4 与MUC1结合蛋白有关的疾病、生物学进程和信号通路Note:A. Diseases associated with MUC1-binding proteins. B. Biological processes associated with MUC1-binding proteins. C. Signaling pathways associated with MUC1-binding proteins.
Fig 4 Diseases, biological processes and signaling pathways associated with MUC1-binding proteins
图5 MUC1结合蛋白参与的信号通路Note:A. Pathways in cancer. B. Metabolic pathway. C. cGMP-PKG signaling pathway. D. TNF signaling pathway. E. Cell cycle.
Fig 5 Signaling pathways of MUC1-binding proteins
1 | LI W, HAN Y, SUN C, et al. Novel insights into the roles and therapeutic implications of MUC1 oncoprotein via regulating proteins and non-coding RNAs in cancer[J]. Theranostics, 2022, 12(3): 999-1011. |
2 | LAKSHMANAN I, PONNUSAMY M P, MACHA M A, et al. Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications [J]. J Thorac Oncol, 2015, 10(1): 19-27. |
3 | REN J, AGATA N, CHEN D, et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents[J]. Cancer Cell, 2004, 5(2): 163-175. |
4 | MORI Y, AKITA K, TANIDA S, et al. MUC1 protein induces urokinase-type plasminogen activator (uPA) by forming a complex with NF-κB p65 transcription factor and binding to the uPA promoter, leading to enhanced invasiveness of cancer cells[J]. J Biol Chem, 2014, 289(51): 35193-35204. |
5 | LI Y, PANG Z, DONG X, et al. MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer[J]. Oncotarget, 2017, 9(3): 3446-3458. |
6 | RAJABI H, AHMAD R, JIN C, et al. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells[J]. Prostate, 2012, 72(15): 1659-1668. |
7 | JIN W, LIAO X, LV Y, et al. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner[J]. Cell Death Dis, 2017, 8(8): e2980. |
8 | LV Y, CANG W, LI Q, et al. Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer[J]. Oncogenesis, 2019, 8(12): 70. |
9 | RAINA D, KOSUGI M, AHMAD R, et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells[J]. Mol Cancer Ther, 2011, 10(5): 806-816. |
10 | HUANG L, REN J, CHEN D, et al. MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation[J]. Cancer Biol Ther, 2003, 2(6): 702-706. |
11 | HUANG L, CHEN D, LIU D, et al. MUC1 oncoprotein blocks glycogen synthase kinase 3β-mediated phosphorylation and degradation of β-catenin[J]. Cancer Res, 2005, 65(22): 10413-10422. |
12 | LI Y, YI H, YAO Y, et al. The cytoplasmic domain of MUC1 induces hyperplasia in the mammary gland and correlates with nuclear accumulation of β-catenin[J]. PLoS One, 2011, 6(4): e19102. |
13 | HUANG L, LIAO X, BECKETT M, et al. MUC1-C oncoprotein interacts directly with ATM and promotes the DNA damage response to ionizing radiation[J]. Genes Cancer, 2010, 1(3): 239-250. |
14 | LIAO C, YU L, PANG Z, et al. WWP1 targeting MUC1 for ubiquitin-mediated lysosomal degradation to suppress carcinogenesis[J]. Signal Transduct Target Ther, 2021, 6(1): 297. |
15 | SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2018, 47(D1): D607-D613. |
16 | ASTER J C, PEAR W S, BLACKLOW S C. The varied roles of Notch in cancer[J]. Annu Rev Pathol, 2017, 12: 245-275. |
17 | WANG Y, ZHAI S, XING J, et al. LncRNA GAS5 promotes abdominal aortic aneurysm formation through regulating the miR-185-5p/ADCY7 axis[J]. Anticancer Drugs, 2022, 33(3): 225-234. |
18 | KINKL N, HAGEMAN G S, SAHEL J A, et al. Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina[J]. Mol Vis, 2002, 8: 149-160. |
19 | MARTÍNEZ-REYES I, CHANDEL N S. Mitochondrial TCA cycle metabolites control physiology and disease[J]. Nat Commun, 2020, 11(1): 102. |
20 | ROMEO S. ACAT2 as a novel therapeutic target to treat fatty liver disease[J]. J Intern Med, 2022, 292(2): 175-176. |
21 | VAMECQ J, ANDREOLETTI P, EL KEBBAJ R, et al. Peroxisomal acyl-CoA oxidase type 1: anti-inflammatory and anti-aging properties with a special emphasis on studies with LPS and argan oil as a model transposable to aging[J]. Oxid Med Cell Longev, 2018, 2018: 6986984. |
22 | RODIONOV R N, JARZEBSKA N, WEISS N, et al. AGXT2: a promiscuous aminotransferase[J]. Trends Pharmacol Sci, 2014, 35(11): 575-582. |
23 | PLAITAKIS A, LATSOUDIS H, SPANAKI C. The human GLUD2 glutamate dehydrogenase and its regulation in health and disease[J]. Neurochem Int, 2011, 59(4): 495-509. |
24 | PIAZZA G A, WARD A, CHEN X, et al. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity[J]. Drug Discov Today, 2020, 25(8): 1521-1527. |
25 | ZOU T, LIU J, SHE L, et al. A perspective profile of ADCY1 in cAMP signaling with drug-resistance in lung cancer[J]. J Cancer, 2019, 10(27): 6848-6857. |
26 | GAO Z, LEI W I, LEE L T O. The role of neuropeptide-stimulated cAMP-EPACs signalling in cancer cells[J]. Molecules, 2022, 27(1): 311. |
27 | DONG Y, CHEN H, GAO J, et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease[J]. J Mol Cell Cardiol, 2019, 136: 27-41. |
28 | MCILWAIN D R, BERGER T, MAK T W. Caspase functions in cell death and disease[J]. Cold Spring Harb Perspect Biol, 2013, 5(4): a008656. |
29 | YUE J, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7): E2346. |
30 | PIWARSKI S A, THOMPSON C, CHAUDHRY A R, et al. The putative endogenous AHR ligand ITE reduces JAG1 and associated NOTCH1 signaling in triple negative breast cancer cells[J]. Biochem Pharmacol, 2020, 174: 113845. |
31 | FUJII W, NISHIMURA T, KANO K, et al. CDK7 and CCNH are components of CDK-activating kinase and are required for meiotic progression of pig oocytes[J]. Biol Reprod, 2011, 85(6): 1124-1132. |
32 | DEGREGORI J. The genetics of the E2F family of transcription factors: shared functions and unique roles[J]. Biochim Biophys Acta, 2002, 1602(2): 131-150. |
33 | REN J, BHARTI A, RAINA D, et al. MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90[J]. Oncogene, 2006, 25(1): 20-31. |
34 | AHMAD R, ALAM M, RAJABI H, et al. The MUC1-C oncoprotein binds to the BH3 domain of the pro-apoptotic BAX protein and blocks BAX function[J]. J Biol Chem, 2012, 287(25): 20866-20875. |
35 | FRUMAN D A, CHIU H, HOPKINS B D, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. |
36 | CUI C, MERRITT R, FU L, et al. Targeting calcium signaling in cancer therapy[J]. Acta Pharm Sin B, 2017, 7(1): 3-17. |
37 | JIN C, RAJABI H, PITRODA S, et al. Cooperative interaction between the MUC1-C oncoprotein and the Rab31 GTPase in estrogen receptor-positive breast cancer cells[J]. PLoS One, 2012, 7(7): e39432. |
38 | RAJABI H, HIRAKI M, TAGDE A, et al. MUC1-C activates EZH2 expression and function in human cancer cells[J]. Sci Rep, 2017, 7(1): 7481. |
39 | MA J, RUBIN B K, VOYNOW J A. Mucins, mucus, and goblet cells[J]. Chest, 2018, 154(1): 169-176. |
40 | PARK J A, PARK S, CHOI J K, et al. Inhibition of MUC1-C increases ROS and cell death in mouse embryonic stem cells[J]. Int J Stem Cells, 2021, 14(2): 180-190. |
41 | HAGIWARA M, YASUMIZU Y, YAMASHITA N, et al. MUC1-C activates the BAF (mSWI/SNF) complex in prostate cancer stem cells[J]. Cancer Res, 2021, 81(4): 1111-1122. |
42 | AGATA N, AHMAD R, KAWANO T, et al. MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8[J]. Cancer Res, 2008, 68(15): 6136-6144. |
43 | CHEN Q, LI D, REN J, et al. MUC1 activates JNK1 and inhibits apoptosis under genotoxic stress[J]. Biochem Biophys Res Commun, 2013, 440(1): 179-183. |
44 | SUN C C, ZHOU Q, HU W, et al. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma[J]. Aging (Albany NY), 2018, 10(5): 973-987. |
45 | TAN P Y, WEN L J, LI H N, et al. miR-548c-3p inhibits the proliferation, migration and invasion of human breast cancer cell by targeting E2F3[J]. Cytotechnology, 2020, 72(5): 751-761. |
46 | TYAGI A, AGARWAL C, AGARWAL R. Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention[J]. Mol Cancer Ther, 2002, 1(7): 525-532. |
47 | EVAN G I, VOUSDEN K H. Proliferation, cell cycle and apoptosis in cancer[J]. Nature, 2001, 411(6835): 342-348. |
[1] | 刘宏强, 陆艳青, 高宇轩, 王一云, 王传东, 张晓玲. 构建高效载体OPEI沉默TRAF6促进骨关节炎软骨再生的研究[J]. 上海交通大学学报(医学版), 2022, 42(7): 846-857. |
[2] | 王雨心, 孙瑞琪, 刘坚华, 何伟娜. 开发用于肿瘤微环境成像的pH敏感荧光探针[J]. 上海交通大学学报(医学版), 2022, 42(7): 875-884. |
[3] | 胡晓, 张鑫, 谷阳. 体质量与C1q肿瘤坏死因子相关蛋白1在心肌梗死患者中的交互作用[J]. 上海交通大学学报(医学版), 2022, 42(6): 786-791. |
[4] | 郑诗凡, 马皎. 肿瘤干细胞代谢在肿瘤发展中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 825-832. |
[5] | 张修齐, 沈柏用. 胰腺导管腺癌神经侵袭的细胞学机制研究进展[J]. 上海交通大学学报(医学版), 2022, 42(6): 833-838. |
[6] | 朱田雨, 宗春燕, 许诗琼, 葛盛芳, 范先群, 贾仁兵. 结膜黑色素瘤组织病理学特征、Ki-67表达和预后的关系[J]. 上海交通大学学报(医学版), 2022, 42(5): 617-623. |
[7] | 陈卫宏, 侯黎莉, 杨玲, 毛艳, 张金凤. 冷冻疗法预防头颈癌患者放射性口腔黏膜炎的meta分析[J]. 上海交通大学学报(医学版), 2022, 42(5): 635-645. |
[8] | 王慧, 赵莹, 温丽蓉, 曹军, 羊继平, 原永明. 前列腺癌患者血液中PSA、TAP、MACC1的表达及其诊断价值[J]. 上海交通大学学报(医学版), 2022, 42(4): 496-501. |
[9] | 许静轩, 杜少倩, 曹源, 王红霞, 黄伟翼. MMP14在胰腺癌中的表达及其与肿瘤免疫微环境特征的相关性研究[J]. 上海交通大学学报(医学版), 2022, 42(3): 312-322. |
[10] | 邢正文, 吴滢, 王雪莉, 王庆煜, 王文婷, 李治, 张彬, 金晶. 8例儿童卵巢颗粒细胞瘤临床病理特征及预后分析[J]. 上海交通大学学报(医学版), 2022, 42(2): 192-196. |
[11] | 李彦庆, 王晓霞, 贾向东, 任猛, 许天祥. 桥粒黏蛋白2在消化系统肿瘤中的功能研究进展[J]. 上海交通大学学报(医学版), 2022, 42(2): 247-252. |
[12] | 程培培, 杜亚松. 白细胞介素-1受体辅助蛋白在神经精神疾病发病中作用的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(1): 101-106. |
[13] | 徐艳丽, 管文斌, 茅伟伟, 朱传营, 张勤, 袁晓军, 谈珍. 52例颅内非典型畸胎样/横纹肌样瘤的临床特征及生存分析[J]. 上海交通大学学报(医学版), 2021, 41(9): 1222-1227. |
[14] | 周天浩, 辛肇晨, 杜少倩, 曹源, 许静轩, 劳曾红, 王红霞. 乳腺癌类器官共培养技术的建立和优化[J]. 上海交通大学学报(医学版), 2021, 41(8): 1017-1024. |
[15] | 季艳杰, 罗浩, 蔡海燕, 刘欣宇, 金诗佳, 粟深月, 徐含章, 雷虎, 吴英理. CDDO-Me对三阴性乳腺癌细胞泛素特异性蛋白酶2a活性及细胞增殖的抑制作用[J]. 上海交通大学学报(医学版), 2021, 41(8): 1025-1032. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 496
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||