1 |
DIMITRIOU R, JONES E, MCGONAGLE D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66.
|
2 |
SALHOTRA A, SHAH H N, LEVI B, et al. Mechanisms of bone development and repair[J]. Nat Rev Mol Cell Biol, 2020, 21: 696-711.
|
3 |
ZHANG H, WU C. 3D printing of biomaterials for vascularized and innervated tissue regeneration[J]. Int J Bioprint, 2023, 9(3): 706.
|
4 |
KEYKHAEE M, RAHIMIFARD M, NAJAFI A, et al. Alginate/gum Arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration[J]. Carbohydr Polym, 2023, 321: 121179.
|
5 |
DOLAN C P, YAN M, ZIMMEL K, et al. Axonal regrowth is impaired during digit tip regeneration in mice[J]. Dev Biol, 2019, 445(2): 237-244.
|
6 |
WAN Q Q, QIN W P, MA Y X, et al. Crosstalk between bone and nerves within bone[J]. Adv Sci (Weinh), 2021, 8(7): 2003390.
|
7 |
ZHANG Z, HAO Z, XIAN C, et al. Neuro-bone tissue engineering: multiple potential translational strategies between nerve and bone[J]. Acta Biomater, 2022, 153: 1-12.
|
8 |
RAJPAR I, TOMLINSON R E. Function of peripheral nerves in the development and healing of tendon and bone[J]. Semin Cell Dev Biol, 2022, 123: 48-56.
|
9 |
GRÄSSEL S G. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology[J]. Arthritis Res Ther, 2014, 16(6): 485.
|
10 |
CASTAÑEDA-CORRAL G, JIMENEZ-ANDRADE J M, BLOOM A P, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A[J]. Neuroscience, 2011, 178: 196-207.
|
11 |
CHEN H, HU B, LV X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis[J]. Nat Commun, 2019, 10: 181.
|
12 |
ZHANG Z, WANG F, HUANG X, et al. Engineered sensory nerve guides self-adaptive bone healing via NGF-TrkA signaling pathway[J]. Adv Sci (Weinh), 2023, 10(10): e2206155.
|
13 |
LIU W J, CHEN W, XIE M, et al. Traumatic brain injury stimulates sympathetic tone-mediated bone marrow myelopoiesis to favor fracture healing[J]. Signal Transduct Target Ther, 2023, 8: 260.
|
14 |
LIU S, LIU S, LI S, et al. Nerves within bone and their application in tissue engineering of bone regeneration[J]. Front Neurol, 2022, 13: 1085560.
|
15 |
RAMASAMY S K. Structure and functions of blood vessels and vascular niches in bone[J]. Stem Cells Int, 2017, 2017: 5046953.
|
16 |
MEYERS C A, LEE S, SONO T, et al. A neurotrophic mechanism directs sensory nerve transit in cranial bone[J]. Cell Rep, 2020, 31(8): 107696.
|
17 |
LEITÃO L, NETO E, CONCEIÇÃO F, et al. Osteoblasts are inherently programmed to repel sensory innervation[J]. Bone Res, 2020, 8: 20.
|
18 |
ZHU S, ZHU J, ZHEN G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain[J]. J Clin Invest, 2019, 129(3): 1076-1093.
|
19 |
NETO E, LEITÃO L, MATEUS J C, et al. Osteoclast-derived extracellular vesicles are implicated in sensory neurons sprouting through the activation of epidermal growth factor signaling[J]. Cell Biosci, 2022, 12(1): 127.
|
20 |
ZHUANG Z, LIU M, LUO J, et al. Exosomes derived from bone marrow mesenchymal stem cells attenuate neurological damage in traumatic brain injury by alleviating glutamate-mediated excitotoxicity[J]. Exp Neurol, 2022, 357: 114182.
|
21 |
LANDINI L, MARINI M, SOUZA MONTEIRO DE ARAUJO D, et al. Schwann cell insulin-like growth factor receptor type-1 mediates metastatic bone cancer pain in mice[J]. Brain Behav Immun, 2023, 110: 348-364.
|
22 |
LI Z, MEYERS C A, CHANG L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves[J]. J Clin Invest, 2019, 129(12): 5137-5150.
|
23 |
SUN S, DIGGINS N H, GUNDERSON Z J, et al. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing[J]. Bone, 2020, 131: 115109.
|
24 |
YE LI, XU J, MI J, et al. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis[J]. Biomaterials, 2021, 275: 120984.
|
25 |
WANG Q, QIN H, DENG J, et al. Research progress in calcitonin gene-related peptide and bone repair[J]. Biomolecules, 2023, 13(5): 838.
|
26 |
TOMLINSON R E, LI Z, ZHANG Q, et al. NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone[J]. Cell Rep, 2016, 16(10): 2723-2735.
|
27 |
XU J, LI Z, TOWER R J, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair[J]. Sci Adv, 2022, 8(11): eabl5716.
|
28 |
LIU Q, LEI L, YU T, et al. Effect of brain-derived neurotrophic factor on the neurogenesis and osteogenesis in bone engineering[J]. Tissue Eng Part A, 2018, 24(15/16): 1283-1292.
|
29 |
ADAMEYKO I, ERNFORS P. Nerves do it again: donation of mesenchymal cells for tissue regeneration[J]. Cell Stem Cell, 2019, 24(2): 195-197.
|
30 |
WANG T, LI W, ZHANG Y, et al. Bioprinted constructs that simulate nerve-bone crosstalk to improve microenvironment for bone repair[J]. Bioact Mater, 2023, 27: 377-393.
|
31 |
ROBLING A G, BONEWALD L F. The osteocyte: new insights[J]. Annu Rev Physiol, 2020, 82: 485-506.
|
32 |
LIU Y, FANG J, ZHANG Q, et al. Wnt10b-overexpressing umbilical cord mesenchymal stem cells promote critical size rat calvarial defect healing by enhanced osteogenesis and VEGF-mediated angiogenesis[J]. J Orthop Translat, 2020, 23: 29-37.
|
33 |
LIU Y, RUAN X, LI J, et al. The osteocyte stimulated by Wnt agonist SKL2001 is a safe osteogenic niche improving bioactivities in a polycaprolactone and cell integrated 3D module[J]. Cells, 2022, 11(5): 831.
|
34 |
WANG X, MA Y, CHEN J, et al. A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis[J]. Bioact Mater, 2023, 21: 110-128.
|
35 |
PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling[J]. Theranostics, 2020, 10(1): 426-436.
|
36 |
PAREDES I, HIMMELS P, RUIZ DE ALMODÓVAR C. Neurovascular communication during CNS development[J]. Dev Cell, 2018, 45(1): 10-32.
|
37 |
QIAO W, PAN D Y, ZHENG Y F, et al. Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models[J]. Nat Commun, 2022, 13: 535.
|
38 |
XU Y, XU C, HE L, et al. Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration[J]. Bioact Mater, 2022, 16: 271-284.
|
39 |
YUAN Z, WAN Z, GAO C, et al. Controlled magnesium ion delivery system for in situ bone tissue engineering[J]. J Control Release, 2022, 350: 360-376.
|
40 |
LIU L, LIU Y, FENG C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis[J]. Biomaterials, 2019, 192: 523-536.
|
41 |
ZEILBECK L F, MÜLLER B, KNOBLOCH V, et al. Differential angiogenic properties of lithium chloride in vitro and in vivo[J]. PLoS One, 2014, 9(4): e95546.
|
42 |
JACOBS A, RENAUDIN G, FORESTIER C, et al. Biological properties of copper-doped biomaterials for orthopedic applications: a review of antibacterial, angiogenic and osteogenic aspects[J]. Acta Biomater, 2020, 117: 21-39.
|
43 |
WANG X, GAO L, HAN Y, et al. Silicon-enhanced adipogenesis and angiogenesis for vascularized adipose tissue engineering[J]. Adv Sci (Weinh), 2018, 5(11): 1800776.
|
44 |
ZHAO H, LIU F, YIN Y, et al. Potassium titanate assembled titanium dioxide nanotube arrays endow titanium implants excellent osseointegration performance and nerve formation potential[J]. Front Chem, 2022, 10: 839093.
|
45 |
ZHANG H, WU S, CHEN W, et al. Bone/cartilage targeted hydrogel: strategies and applications[J]. Bioact Mater, 2023, 23: 156-169.
|
46 |
LIU F, WEI B, XU X, et al. Nanocellulose-reinforced hydroxyapatite nanobelt membrane as a stem cell multi-lineage differentiation platform for biomimetic construction of bioactive 3D osteoid tissue in vitro[J]. Adv Healthc Mater, 2021, 10(8): e2001851.
|
47 |
QIN C, ZHANG H, CHEN L, et al. Cell-laden scaffolds for vascular-innervated bone regeneration[J]. Adv Healthc Mater, 2023, 12(13): e2201923.
|
48 |
XU Y, XU C, YANG K, et al. Copper ion-modified germanium phosphorus nanosheets integrated with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration[J]. Adv Healthc Mater, 2023, 12(27): e2301151.
|
49 |
WANG L, PANG Y, TANG Y, et al. A biomimetic piezoelectric scaffold with sustained Mg2+ release promotes neurogenic and angiogenic differentiation for enhanced bone regeneration[J]. Bioact Mater, 2023, 25: 399-414.
|
50 |
JING X, XU C, SU W, et al. Photosensitive and conductive hydrogel induced innerved bone regeneration for infected bone defect repair[J]. Adv Healthc Mater, 2023, 12(3): e2201349.
|
51 |
WANG X, ZHENG W, BAI Z, et al. Mimicking bone matrix through coaxial electrospinning of core-shell nanofibrous scaffold for improving neurogenesis bone regeneration[J]. Biomater Adv, 2023, 145: 213246.
|
52 |
YAN Z R, LI K, SHAO D D, et al. Visible-light-responsive reduced graphene oxide/g-C3N4/TiO2 composite nanocoating for photoelectric stimulation of neuronal and osteoblastic differentiation[J]. RSC Adv, 2022, 12(15): 8878-8888.
|
53 |
SU Y, ZENG L, DENG R, et al. Endogenous electric field-coupled PD@BP biomimetic periosteum promotes bone regeneration through sensory nerve via fanconi anemia signaling pathway[J]. Adv Healthc Mater, 2023, 12(12): e2203027.
|
54 |
HAO Z, REN L, ZHANG Z, et al. A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis[J]. Bioact Mater, 2023, 23: 206-222.
|