| [1] |
LIAO C, ZHANG W. Nerve decompression for diabetic peripheral neuropathy with nerve entrapment: a narrative review[J]. Ther Adv Neurol Disord, 2024, 17: 17562864241265287.
|
| [2] |
SLOAN G, SHILLO P, SELVARAJAH D, et al. A new look at painful diabetic neuropathy[J]. Diabetes Res Clin Pract, 2018, 144: 177-191.
|
| [3] |
ROSENBERGER D C, BLECHSCHMIDT V, TIMMERMAN H, et al. Challenges of neuropathic pain: focus on diabetic neuropathy[J]. J Neural Transm, 2020, 127(4): 589-624.
|
| [4] |
PELTIER A, GOUTMAN S A, CALLAGHAN B C. Painful diabetic neuropathy[J]. BMJ, 2014, 348: g1799.
|
| [5] |
JENSEN T S, FINNERUP N B. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms[J]. Lancet Neurol, 2014, 13(9): 924-935.
|
| [6] |
CHEN F Y, TAO W, LI Y J. Advances in brain imaging of neuropathic pain[J]. Chin Med J (Engl), 2008, 121(7): 653-657.
|
| [7] |
OBROSOVA I G. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments[J]. Neurotherapeutics, 2009, 6(4): 638-647.
|
| [8] |
LIAO C, ZHOU H, CHEN H, et al. Patterns of nerve fibre impairments and neuronal activation in male diabetic rats with and without mechanical allodynia: a comparative study[J]. Can J Diabetes, 2022, 46(2): 157-164.
|
| [9] |
CAI S, GOMEZ K, MOUTAL A, et al. Targeting T-type/CaV3.2 channels for chronic pain[J]. Transl Res, 2021, 234: 20-30.
|
| [10] |
ORESTES P, OSURU H P, MCINTIRE W E, et al. Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels[J]. Diabetes, 2013, 62(11): 3828-3838.
|
| [11] |
WEISS N, BLACK S A G, BLADEN C, et al. Surface expression and function of Cav3.2T-type calcium channels are controlled by asparagine-linked glycosylation[J]. Pflügers Arch Eur J Physiol, 2013, 465(8): 1159-1170.
|
| [12] |
LIAO C, YANG M, LIU P, et al. Stable rat model of mechanical allodynia in diabetic peripheral neuropathy: the role of nerve compression[J]. J Reconstr Microsurg, 2018, 34(4): 264-269.
|
| [13] |
MORROW T J. Animal models of painful diabetic neuropathy: the STZ rat model[J]. Curr Protoc Neurosci, 2004, Chapter 9: Unit9.18.
|
| [14] |
HARGREAVES K, DUBNER R, BROWN F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia[J]. Pain, 1988, 32(1): 77-88.
|
| [15] |
CHAPLAN S R, BACH F W, POGREL J W, et al. Quantitative assessment of tactile allodynia in the rat paw[J]. J Neurosci Methods, 1994, 53(1): 55-63.
|
| [16] |
SZALLASI A, BLUMBERG P M. Vanilloid (capsaicin) receptors and mechanisms[J]. Pharmacol Rev, 1999, 51(2): 159-212.
|
| [17] |
JOKSIMOVIC S L, EVANS J G, MCINTIRE W E, et al. Glycosylation of CaV3.2 channels contributes to the hyperalgesia in peripheral neuropathy of type 1 diabetes[J]. Front Cell Neurosci, 2020, 14: 605312.
|
| [18] |
THEMISTOCLEOUS A C, RAMIREZ J D, SHILLO P R, et al. The pain in neuropathy study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy[J]. Pain, 2016, 157(5): 1132-1145.
|
| [19] |
HÉBERT H L, VELUCHAMY A, TORRANCE N, et al. Risk factors for neuropathic pain in diabetes mellitus[J]. Pain, 2017, 158(4): 560-568.
|
| [20] |
RAPUTOVA J, SROTOVA I, VLCKOVA E, et al. Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study[J]. Pain, 2017, 158(12): 2340-2353.
|
| [21] |
GYLFADOTTIR S S, WEERACHAROENKUL D, ANDERSEN S T, et al. Painful and non-painful diabetic polyneuropathy: clinical characteristics and diagnostic issues[J]. J Diabetes Investig, 2019, 10(5): 1148-1157.
|
| [22] |
SHILLO P, SLOAN G, GREIG M, et al. Painful and painless diabetic neuropathies: what is the difference?[J]. Curr Diabetes Rep, 2019, 19(6): 32.
|
| [23] |
KIM S H, KWON J K, KWON Y B. Pain modality and spinal Glia expression by streptozotocin induced diabetic peripheral neuropathy in rats[J]. Lab Anim Res, 2012, 28(2): 131-136.
|
| [24] |
KANG X J, CHI Y N, CHEN W, et al. Increased expression of CaV3.2 T-type calcium channels in damaged DRG neurons contributes to neuropathic pain in rats with spared nerve injury[J]. Mol Pain, 2018, 14: 1744806918765808.
|
| [25] |
TAKAHASHI T, AOKI Y, OKUBO K, et al. Upregulation of Cav3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain[J]. Pain, 2010, 150(1): 183-191.
|
| [26] |
BOURINET E, ALLOUI A, MONTEIL A, et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception[J]. EMBO J, 2005, 24(2): 315-324.
|
| [27] |
KHAN G M, CHEN S R, PAN H L. Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats[J]. Neuroscience, 2002, 114(2): 291-299.
|
| [28] |
OSSIPOV M H, BIAN D, MALAN P T, et al. Lack of involvement of capsaicin-sensitive primary afferents in nerve-ligation injury induced tactile allodynia in rats[J]. Pain, 1999, 79(2): 127-133.
|
| [29] |
TODOROVIC S M, JEVTOVIC-TODOROVIC V. T-type voltage-gated calcium channels as targets for the development of novel pain therapies[J]. Br J Pharmacol, 2011, 163(3): 484-495.
|
| [30] |
CATTERALL W A, PEREZ-REYES E, SNUTCH T P, et al. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels[J]. Pharmacol Rev, 2005, 57(4): 411-425.
|
| [31] |
LAZNIEWSKA J, WEISS N. Glycosylation of voltage-gated calcium channels in health and disease[J]. Biochim Biophys Acta BBA Biomembr, 2017, 1859(5): 662-668.
|
| [32] |
CORTEZ J, REIS C, CARDOSO Y, et al. Prevalence of neuropathic pain and associated factors in diabetes mellitus type 2 patients seen in outpatient setting[J]. Rev Dor, 2014, 15(4).DOI: https://doi.org/10.5935/1806-0013.20140055.
|
| [33] |
DAVIES M, BROPHY S, WILLIAMS R, et al. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes[J]. Diabetes Care, 2006, 29(7): 1518-1522.
|