| [1] |
MOTTA F, BARONE E, SICA A, et al. Inflammaging and osteoarthritis[J]. Clin Rev Allergy Immunol, 2023, 64(2): 222-238.
|
| [2] |
RAHMATI M, NALESSO G, MOBASHERI A, et al. Aging and osteoarthritis: central role of the extracellular matrix[J]. Ageing Res Rev, 2017, 40: 20-30.
|
| [3] |
LV S, XU J Y, CHEN L, et al. microRNA-27b targets CBFB to inhibit differentiation of human bone marrow mesenchymal stem cells into hypertrophic chondrocytes[J]. Stem Cell Res Ther, 2020, 11(1): 392.
|
| [4] |
LIU Y Z, PENG L Q, LI L L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model[J]. Biomaterials, 2021, 279: 121216.
|
| [5] |
TEMENOFF J S, MIKOS A G. Review: tissue engineering for regeneration of articular cartilage[J]. Biomaterials, 2000, 21(5): 431-440.
|
| [6] |
SOLHEIM E, HEGNA J, INDERHAUG E, et al. Results at 10‒14 years after microfracture treatment of articular cartilage defects in the knee[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(5): 1587-1593.
|
| [7] |
XU J B, FENG Q, LIN S E, et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules[J]. Biomaterials, 2019, 210: 51-61.
|
| [8] |
ZHAO Z D, WANG Y X, YIN B F, et al. Defect-adaptive stem-cell-microcarrier construct promotes tissue repair in rabbits with knee cartilage defects[J]. Stem Cell Rev Rep, 2023, 19(1): 201-212.
|
| [9] |
WANG W T, LIU Q, YANG Q W, et al. 3D-printing hydrogel programmed released exosomes to restore aortic medial degeneration through inhibiting VSMC ferroptosis in aortic dissection[J]. J Nanobiotechnology, 2024, 22(1): 600.
|
| [10] |
ZHANG Y Y, CHEN H, LI J S. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering[J]. Int J Biol Macromol, 2022, 221: 91-107.
|
| [11] |
YUE K, TRUJILLO-DE SANTIAGO G, ALVAREZ M M, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271.
|
| [12] |
KUSACZUK M. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives[J]. Cells, 2019, 8(12): 1471.
|
| [13] |
KARS M, YANG L, GREGOR M F, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women[J]. Diabetes, 2010, 59(8): 1899-1905.
|
| [14] |
LI F J, ABUDUREYIMU M, ZHANG Z H, et al. Inhibition of ER stress using tauroursodeoxycholic acid rescues obesity-evoked cardiac remodeling and contractile anomalies through regulation of ferroptosis[J]. Chem Biol Interact, 2024, 398: 111104.
|
| [15] |
SONG H H, LIU J C, WANG L J, et al. Tauroursodeoxycholic acid: a bile acid that may be used for the prevention and treatment of Alzheimer′s disease[J]. Front Neurosci, 2024, 18: 1348844.
|
| [16] |
YUN S P, YOON Y M, LEE J H, et al. Tauroursodeoxycholic acid protects against the effects of P-cresol-induced reactive oxygen species via the expression of cellular prion protein[J]. Int J Mol Sci, 2018, 19(2): 352.
|
| [17] |
KIM Y H, KIM J H, KIM B G, et al. Tauroursodeoxycholic acid attenuates colitis-associated colon cancer by inhibiting nuclear factor κB signaling[J]. J Gastroenterol Hepatol, 2019, 34(3): 544-551.
|
| [18] |
LUO L B, ZHAO Y, ZHANG G J, et al. Tauroursodeoxycholic acid reverses dextran sulfate sodium-induced colitis in mice via modulation of intestinal barrier dysfunction and microbiome dysregulation[J]. J Pharmacol Exp Ther, 2024, 390(1): 116-124.
|
| [19] |
WANG H, GUO Y, HAN W T, et al. Tauroursodeoxycholic acid improves nonalcoholic fatty liver disease by regulating gut microbiota and bile acid metabolism[J]. J Agric Food Chem, 2024, 72(36): 20194-20210.
|
| [20] |
ARAI Y, CHOI B, KIM B J, et al. Tauroursodeoxycholic acid (TUDCA) counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes[J]. Biomater Sci, 2019, 7(8): 3178-3189.
|
| [21] |
LIU C, CAO Y P, YANG X, et al. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis[J]. Int J Mol Med, 2015, 36(4): 1081-1087.
|
| [22] |
NIE P, LI Y, SUO H R, et al. Dasatinib promotes chondrogenic differentiation of human mesenchymal stem cells via the Src/Hippo-YAP signaling pathway[J]. ACS Biomater Sci Eng, 2019, 5(10): 5255-5265.
|
| [23] |
SUO H R, XU K D, ZHANG H Y, et al. Determination of glucosamine and its derivatives released from photocrosslinked gelatin hydrogels using HPLC[J]. Biomed Chromatogr, 2016, 30(2): 169-174.
|
| [24] |
SUO H R, XU K D, ZHENG X X. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds[J]. J Biomater Appl, 2015, 29(7): 977-987.
|
| [25] |
VAN DEN BORNE M J, RAIJMAKERS N H, VANLAUWE J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture[J]. Osteoarthritis Cartilage, 2007, 15(12): 1397-1402.
|
| [26] |
O'DRISCOLL S W, MARX R G, BEATON D E, et al. Validation of a simple histological-histochemical cartilage scoring system[J]. Tissue Eng, 2001, 7(3): 313-320.
|
| [27] |
HAFEZI M, NOURI KHORASANI S, ZARE M, et al. Advanced hydrogels for cartilage tissue engineering: recent progress and future directions[J]. Polymers (Basel), 2021, 13(23): 4199.
|
| [28] |
BAČENKOVÁ D, TREBUŇOVÁ M, DEMETEROVÁ J, et al. Human chondrocytes, metabolism of articular cartilage, and strategies for application to tissue engineering[J]. Int J Mol Sci, 2023, 24(23): 17096.
|
| [29] |
GHANDFOROUSHAN P, ALEHOSSEINI M, GOLAFSHAN N, et al. Injectable hydrogels for cartilage and bone tissue regeneration: a review[J]. Int J Biol Macromol, 2023, 246: 125674.
|
| [30] |
CHEN L, LIU J X, GUAN M, et al. Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering[J]. Int J Nanomedicine, 2020, 15: 6097-6111.
|
| [31] |
YANG J Z, ZHANG Y S, YUE K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J]. Acta Biomater, 2017, 57: 1-25.
|
| [32] |
NOVOTNÁ R, FRANKOVÁ J. Materials suitable for osteochondral regeneration[J]. ACS Omega, 2024, 9(28): 30097-30108.
|
| [33] |
HUANG B, LI P X, CHEN M X, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications[J]. J Nanobiotechnology, 2022, 20(1): 25.
|
| [34] |
JURCZAK P, LACH S. Hydrogels as scaffolds in bone-related tissue engineering and regeneration[J]. Macromol Biosci, 2023, 23(11): e2300152.
|
| [35] |
李明欣, 李军, 王文朝, 等. 载细胞多孔甲基丙烯酸酐化明胶三维支架及对细胞行为的影响[J]. 中国组织工程研究, 2022, 26(16): 2532-2539.
|
|
LI M X, LI J, WAN W C, et al. Cell-carrying porous methacrylate anhydride gelatin three-dimensional scaffolds and their effects on cell behavior[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(16): 2532-2539.
|