1 |
Zhang ZY, Huang CB, Jiang Q, et al. Guidelines for the diagnosis and treatment of osteoarthritis in China (2019 edition)[J]. Ann Transl Med, 2020, 8(19): 1213.
|
2 |
Mantovani V, Maccari F, Volpi N. Chondroitin sulfate and glucosamine as disease modifying anti-osteoarthritis drugs (DMOADs)[J]. Curr Med Chem, 2016, 23(11): 1139-1151.
|
3 |
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6): 775-781.
|
4 |
Guilak F, Nims RJ, Dicks A, et al. Osteoarthritis as a disease of the cartilage pericellular matrix[J]. Matrix Biol, 2018, 71-72: 40-50.
|
5 |
Poole CA, Flint MH, Beaumont BW. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages[J]. J Orthop Res, 1987, 5(4): 509-522.
|
6 |
Lee GM, Paul TA, Slabaugh M, et al. The incidence of enlarged chondrons in normal and osteoarthritic human cartilage and their relative matrix density[J]. Osteoarthritis Cartilage, 2000, 8(1): 44-52.
|
7 |
Zhang ZJ. Chondrons and the pericellular matrix of chondrocytes[J]. Tissue Eng Part B Rev, 2015, 21(3): 267-277.
|
8 |
Han SK, Federico S, Herzog W. A depth-dependent model of the pericellular microenvironment of chondrocytes in articular cartilage[J]. Comput Methods Biomech Biomed Engin, 2011, 14(7): 657-664.
|
9 |
Hofmann UK, Steidle J, Danalache M, et al. Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix[J]. J Tissue Eng Regen Med, 2018, 12(9): 2000-2010.
|
10 |
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage[J]. Matrix Biol, 2014, 39: 25-32.
|
11 |
Di Federico E, Bader DL, Shelton JC. 3D models of chondrocytes within biomimetic scaffolds: effects of cell deformation from loading regimens[J]. Clin Biomech (Bristol, Avon), 2020, 79: 104972.
|
12 |
Rodgers KD, Sasaki T, Aszodi A, et al. Reduced perlecan in mice results in chondrodysplasia resembling Schwartz-Jampel syndrome[J]. Hum Mol Genet, 2007, 16(5): 515-528.
|
13 |
Wang B, Lai XH, Price C, et al. Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system[J]. J Bone Miner Res, 2014, 29(4): 878-891.
|
14 |
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage[J]. Matrix Biol, 2014, 39: 25-32.
|
15 |
Peters HC, Otto TJ, Enders JT, et al. The protective role of the pericellular matrix in chondrocyte apoptosis[J]. Tissue Eng Part A, 2011, 17(15-16): 2017-2024.
|
16 |
Poole CA, Matsuoka A, Schofield JR. Chondrons from articular cartilage. Ⅲ. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage[J]. Arthritis Rheum, 1991, 34(1): 22-35.
|
17 |
Lotz MK, Otsuki S, Grogan SP, et al. Cartilage cell clusters[J]. Arthritis Rheum, 2010, 62(8): 2206-2218.
|
18 |
Rolauffs B, Williams JM, Aurich M, et al. Proliferative remodeling of the spatial organization of human superficial chondrocytes distant from focal early osteoarthritis[J]. Arthritis Rheum, 2010, 62(2): 489-498.
|
19 |
Danalache M, Kleinert R, Schneider J, et al. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organisation in osteoarthritic cartilage[J]. Osteoarthritis Cartilage, 2019, 27(5): 823-832.
|
20 |
Danalache M, Erler AL, Wolfgart JM, et al. Biochemical changes of the pericellular matrix and spatial chondrocyte organization: two highly interconnected hallmarks of osteoarthritis[J]. J Orthop Res, 2020, 38(10): 2170-2180.
|
21 |
Yuan X, Yang S. Primary cilia and intraflagellar transport proteins in bone and cartilage[J]. J Dent Res, 2016, 95(12): 1341-1349.
|
22 |
Ruhlen R, Marberry K. The chondrocyte primary cilium[J]. Osteoarthritis Cartilage, 2014, 22(8): 1071-1076.
|
23 |
Zhao ZX, Li YF, Wang MJ, et al. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis[J]. J Cell Mol Med, 2020, 24(10): 5408-5419.
|
24 |
Zelenski NA, Leddy HA, Sanchez-Adams J, et al. Type Ⅵ collagen regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in mouse articular cartilage[J]. Arthritis Rheumatol, 2015, 67(5): 1286-1294.
|
25 |
Wann AK, Knight MM. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response[J]. Cell Mol Life Sci, 2012, 69(17): 2967-2977.
|
26 |
Xiang W, Zhang J, Wang R, et al. Role of IFT88 in icariin‑regulated maintenance of the chondrocyte phenotype[J]. Mol Med Rep, 2018, 17(4): 4999-5006.
|
27 |
Chen JQ, Tu XL, Esen E, et al. WNT7B promotes bone formation in part through mTORC1[J]. PLoS Genet, 2014, 10(1): e1004145.
|
28 |
Zhang Y, Vasheghani F, Li YH, et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis[J]. Ann Rheum Dis, 2015, 74(7): 1432-1440.
|
29 |
Zhou YC, Wang TY, Hamilton JL, et al. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis[J]. Curr Rheumatol Rep, 2017, 19(9): 53.
|
30 |
Woods S, Barter MJ, Elliott HR, et al. miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse[J]. Matrix Biol, 2019, 77: 87-100.
|
31 |
Rockel JS, Yu CY, Whetstone H, et al. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis[J]. J Clin Invest, 2016, 126(5): 1649-1663.
|
32 |
Deng Q, Li P, Che MJ, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-catenin[J]. Elife, 2019, 8: e50208.
|
33 |
van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints[J]. Nat Rev Rheumatol, 2017, 13(3): 155-163.
|
34 |
Zhang XR, Zhu J, Liu F, et al. Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model[J]. Bone Res, 2014, 2: 14015.
|
35 |
Jia H, Ma X, Tong W, et al. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation[J]. PNAS, 2016, 113(50): 14360-14365.
|
36 |
Janssen JN, Batschkus S, Schimmel S, et al. The influence of TGF-β3, EGF, and BGN on SOX9 and RUNX2 expression in human chondrogenic progenitor cells[J]. J Histochem Cytochem, 2019, 67(2): 117-127.
|
37 |
Qin L, Beier F. EGFR signaling: friend or foe for cartilage?[J]. JBMR Plus, 2019, 3(2): e10177.
|
38 |
Im HJ, Muddasani P, Natarajan V, et al. Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase Cδ pathways in human adult articular chondrocytes[J]. J Biol Chem, 2007, 282(15): 11110-11121.
|
39 |
Yao XD, Zhang JM, Jing XZ, et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission[J]. Pharmacol Res, 2019, 139: 314-324.
|