1 |
GILBERT J A, BLASER M J, CAPORASO J G, et al. Current understanding of the human microbiome[J]. Nat Med, 2018, 24(4): 392-400.
|
2 |
NG S C, KAPLAN G G, TANG W, et al. Population density and risk of inflammatory bowel disease: a prospective population-based study in 13 countries or regions in Asia-Pacific[J]. Am J Gastroenterol, 2019, 114(1): 107-115.
|
3 |
GUAN Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease[J]. J Immunol Res, 2019, 2019: 7247238.
|
4 |
PARK J, CHEON J H. Incidence and prevalence of inflammatory bowel disease across Asia[J]. Yonsei Med J, 2021, 62(2): 99-108.
|
5 |
LLOYD-PRICE J, ARZE C, ANANTHAKRISHNAN A N, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662.
|
6 |
HUGHES E R, WINTER M G, DUERKOP B A, et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis[J]. Cell Host Microbe, 2017, 21(2): 208-219.
|
7 |
KEITA ÅV, ALKAISSI L Y, HOLM E B, et al. Enhanced E. coli LF82 translocation through the follicle-associated epithelium in Crohn's disease is dependent on long polar fimbriae and CEACAM6 expression, and increases paracellular permeability[J]. J Crohns Colitis, 2019, 14(2): 216-229.
|
8 |
PALMELA C, CHEVARIN C, XU Z, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease[J]. Gut, 2018, 67(3): 574-587.
|
9 |
ALAM M T, AMOS G C A, MURPHY A R J, et al. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels[J]. Gut Pathog, 2020, 12: 1.
|
10 |
ISOBE J, MAEDA S, OBATA Y, et al. Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon[J]. Int Immunol, 2019, 32(4): 243-258.
|
11 |
GLASSNER K L, ABRAHAM B P, QUIGLEY E M M. The microbiome and inflammatory bowel disease[J]. J Allergy Clin Immunol, 2020, 145(1): 16-27.
|
12 |
LEYLABADLO H E, GHOTASLOU R, FEIZABADI M M, et al. The critical role of Faecalibacterium prausnitzii in human health: an overview[J]. Microb Pathog, 2020, 149: 104344.
|
13 |
ZHOU Y, XU H, XU J, et al. F. prausnitzii and its supernatant increase SCFAs-producing bacteria to restore gut dysbiosis in TNBS-induced colitis[J]. AMB Express, 2021, 11(1): 33.
|
14 |
QUÉVRAIN E, MAUBERT MA, MICHON C, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease[J]. Gut, 2016, 65(3): 415-425.
|
15 |
ELSON C O, CONG Y. Host-microbiota interactions in inflammatory bowel disease[J]. Gut Microbes, 2012, 3(4): 332-344.
|
16 |
VICH VILA A, IMHANN F, COLLIJ V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome[J]. Sci Transl Med, 2018, 10(472): eaap8914.
|
17 |
LUO W, SHEN Z, DENG M, et al. Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response[J]. Mol Med Rep, 2019, 20(2): 1007-1016.
|
18 |
HENKE M T, KENNY D J, CASSILLY C D, et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide[J]. PNAS, 2019, 116(26): 12672-12677.
|
19 |
DAI Z, ZHANG J, WU Q, et al. The role of microbiota in the development of colorectal cancer[J]. Int J Cancer, 2019, 145(8): 2032-2041.
|
20 |
BLANDFORD L E, JOHNSTON E L, SANDERSON J D, et al. Promoter orientation of the immunomodulatory Bacteroides fragilis capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD)[J]. Gut Microbes, 2019, 10(5): 569-577.
|
21 |
LOPEZ-SILES M, ENRICH-CAPÓ N, ALDEGUER X, et al. Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects[J]. Front Cell Infect Microbiol, 2018, 8: 281.
|
22 |
ZHANG T, JI X, LU G, et al. The potential of Akkermansia muciniphila in inflammatory bowel disease[J]. Appl Microbiol Biotechnol, 2021, 105(14/15): 5785-5794.
|
23 |
SOKOL H, LEDUCQ V, ASCHARD H, et al. Fungal microbiota dysbiosis in IBD[J]. Gut, 2017, 66(6): 1039-1048.
|
24 |
LIMON J J, SKALSKI J H, UNDERHILL D M. Commensal fungi in health and disease[J]. Cell Host Microbe, 2017, 22(2): 156-165.
|
25 |
Bojang E, Ghuman H, Kumwenda P, et al. Immune sensing of Candida albicans[J]. J Fungi (Basel), 2021, 7(2): 1-16.
|
26 |
HOARAU G, MUKHERJEE PK, GOWER-ROUSSEAU C, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease[J]. mBio, 2016, 7(5): e01250-16.
|
27 |
TANG C, KAMIYA T, LIU Y, et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine[J]. Cell Host Microbe, 2015, 18(2): 183-197.
|
28 |
LIGUORI G, LAMAS B, RICHARD M L, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients[J]. J Crohns Colitis, 2015, 10(3): 296-305.
|
29 |
SIVIGNON A, DE VALLÉE A, BARNICH N, et al. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn's disease[J]. Inflamm Bowel Dis, 2015, 21(2): 276-286.
|
30 |
CHIARO TR, SOTO R, ZAC STEPHENS W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice[J]. Sci Transl Med, 2017, 9(380): eaaf9044.
|
31 |
LIMON J J, TANG J, LI D, et al. Malassezia is associated with Crohn's disease and exacerbates colitis in mouse models[J]. Cell Host Microbe, 2019, 25(3): 377-388.e6.
|
32 |
TARRIS G, DE ROUGEMONT A, CHARKAOUI M, et al. Enteric viruses and inflammatory bowel disease[J]. Viruses, 2021, 13(1): 104.
|
33 |
GOGOKHIA L, BUHRKE K, BELL R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis[J]. Cell Host Microbe, 2019, 25(2): 285-299.e8.
|
34 |
LAM S, ZUO T, HO M, et al. Review article: fungal alterations in inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2019, 50(11/12): 1159-1171.
|
35 |
MILAJERDI A, EBRAHIMI-DARYANI N, DIELEMAN L A, et al. Association of dietary fiber, fruit, and vegetable consumption with risk of inflammatory bowel disease: a systematic review and meta-analysis[J]. Adv Nutr, 2020, 12(3): 735-743.
|
36 |
AKRAM W, GARUD N, JOSHI R. Role of inulin as prebiotics on inflammatory bowel disease[J]. Drug Discov Ther, 2019, 13(1): 1-8.
|
37 |
DIEDEREN K, LI J V, DONACHIE G E, et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease[J]. Sci Rep, 2020, 10(1): 18879.
|
38 |
NICHOLSON M R, MITCHELL P D, ALEXANDER E, et al. Efficacy of fecal microbiota transplantation for Clostridium difficile infection in children[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 612-619.e1.
|
39 |
BURRELLO C, GARAVAGLIA F, CRIBIÙ F M, et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells[J]. Nat Commun, 2018, 9(1): 5184.
|
40 |
JAKUBCZYK D, LESZCZYŃSKA K, GÓRSKA S. The effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD): a critical review[J]. Nutrients, 2020, 12(7): 1973.
|